Автор работы: Пользователь скрыл имя, 02 Августа 2014 в 14:13, реферат
Под экономическим ростом обычно понимают долговременную тенденцию увеличения реального объема выпуска в экономике. Показателями экономического роста являются темпы роста или прироста ВВП (ВНП) или национального дохода (НД) за определенный промежуток времени, или те же показатели, но соотнесенные с численностью населения страны, т.е. ВВП (ВНП) или НД, приходящиеся на душу населения. Для измерения экономического роста используются показатели абсолютного прироста или темпов прироста реального объема выпуска в целом (ВВП, ВИД) или в расчете на душу населения.
Совокупный спрос в модели Солоу определяется инвестициями и потреблением: у=i+с, где i и с - инвестиции и потребление в расчете на одного занятого. Это позволяет наблюдать изменение предельного продукта на одного работника в зависимости от капиталовооруженности .
Исходя из склонности к потреблению и сбережению можно сказать, что произведенный каждым работником продукт распадается на потребление в расчете на одного работника и инвестиции, приходящиеся также на одного работника: у = п + и. Т.Е. доход делится между потреблением и сбережениями в соответствии с нормой сбережения, так что потребление можно представить как с=(1-s)y, где s -норма сбережения (накопления), тогда у=с+i=(1-s)y+i, откуда i=sy. В условиях равновесия инвестиции равны сбережениям и пропорциональны доходу.
При равенстве сбережений и инвестиций норма сбережений указывает на долю капиталовложений в произведенном продукте.
Условия равенства спроса и предложения могут быть представлены как ƒ(k)= с+i или ƒ(k)= i/s. Производственная функция определяет предложение на рынке товаров, а накопление капитала - спрос на произведенный продукт.
Динамика объёма выпуска зависит от объёма капитала (в нашем случае- капитала в расчете на одного занятого, или капиталовооруженности). Объём капитала меняется под воздействием инвестиций и выбытия: инвестиции увеличивают запас капитала, выбытие - уменьшает.
Инвестиции зависят от фондовооруженности и нормы накопления, что следует из условия равенства спроса и предложения в экономике: i=sƒ(k). Норма накопления определяет деление продукта на инвестиции и потребление при любом значении k (рис. 1): у=ƒ(k), i=sƒ(k), с=(1-s)ƒ(k).
Амортизация учитывается следующим образом: если приять, что ежегодно вследствие износа капитала выбывает его фиксированная часть d (норма выбытия), то величина выбытия будет пропорциональна объёму капитала и равна dk. На графике эта связь отражается прямой, выходящей из точки начала координат, с угловым коэффициентом d (рис. 2).
Рис.2. Зависимость производства, потребления, инвестиций от капиталовооруженности
Влияние инвестиций и выбытия на динамику запасов капитала можно представить уравнением: Δk=i-dk, или, используя равенство инвестиций и сбережений, Δk=sƒ(k)-dk. Запас капитала (k) будет увеличиваться (Δk>0) до уровня, при котором инвестиции будут равны величине выбытия, т.е. sƒ(k)=dk. После этого запас капитала на одного занятого (фондовооруженность) не будет меняться во времени, поскольку две действующие на него силы уравновесят друг друга (Δk=0). Уровень запаса капитала, при котором инвестиции равны выбытию, называется равновесным (устойчивым) уровнем фондовооруженности труда и обозначается k*. При достижении k* экономика находится в состоянии долгосрочного равновесия.
Равновесие является устойчивым, поскольку независимо от исходного значения к экономика будет стремиться к равновесному состоянию, т.е. к k*. Если начальное k1 ниже k*, то валовые инвестиции (sƒ(k) будут больше выбытия (dk) и запас капитала будет возрастать на величину чистых инвестиций. Если k2>k*, это означает, что инвестиции меньше, чем износ, а значит запас капитала будет сокращаться, приближаясь к уровню k* (см. рис. 2).
Норма накопления (сбережения) непосредственно влияет на устойчивый уровень фондовооруженности. Рост нормы сбережения с s1 до s2 сдвигает кривую инвестиций вверх из положения s1ƒ(k) до s2(k) (см. рис. 3).
рис. 3. Инвестиции, выбытие и устойчивый уровень капиталовооруженности
В исходном состоянии экономика имела устойчивый запас капитала k1*, при котором инвестиции равнялись выбытию. После повышения нормы сбережения инвестиции выросли на(i′1-i1) , а запас капитала (k1*) и выбытие (dk1) остались прежними. В этих условиях инвестиции начинают превышать выбытие, что вызывает рост запаса капитала до уровня нового равновесия k2*, которое характеризуется более высокими знаниями фондовооруженности и производительности труда (выпуск на одного занятого, у).
Таким образом, чем выше норма сбережения (накопления), тем более высокий уровень выпуска и запаса капитала может быть достигнут в состоянии устойчивого равновесия. Однако повышение нормы накопления ведёт к ускорению экономического роста в краткосрочном периоде, до тех пор, пока экономика не достигнет точки нового устойчивого равновесия.
2. Экономический рост и уровень потребления
Для дальнейшего развития модели Солоу поочередно снимаются две предпосылки: неизменность численности населения и его занятой части (их динамика предполагается одинаковой) и отсутствие технического прогресса.
Предположим, население растёт с постоянным темпом n. Это новый фактор, влияющий вместе с инвестициями и выбытием на фондовооруженность. Теперь уравнение, показывающее изменение запаса капитала на одного работника, будет выглядеть как:
∆k=i-dk-nk или ∆k=i-(d+n)k.
Рост населения аналогично выбытию снижает фондовооруженность, хотя и по-другому - не через уменьшение наличного запаса капитала, а путем распределения его между возросшим числом занятых. В данных условиях необходим такой объем инвестиций, который не только бы покрыл выбытие капитала, но и позволил бы обеспечить капиталом новых рабочих в прежнем объёме. Произведение nk показывает, сколько требуется дополнительного капитала в расчете на одного занятого, чтобы капиталовооруженность новых рабочих была на том же уровне, что и старых.
Условие устойчивого равновесия в экономике при неизменной фондовооруженности k* можно будет записать теперь так:
∆k=sƒ(k)-(d+n)k=0 или sƒ(k)=(d+n)k
Данное состояние характеризуется полной занятостью ресурсов (рис.4).
рис.4. Экономический рост с учетом прироста населения
рис.5.
В устойчивом состоянии экономики капитал и выпуск на одного занятого, т.е. фондовооруженность (k) и производительность (у) труда остаются неизменными. Но, чтобы фондовооруженность оставалась постоянной и при росте населения, капитал должен возрастать с тем же темпом, что и население, т.е.:
∆Y/Y=∆L/L=∆K/K=n.
Таким образом, рост населения становится одной из причин непрерывного экономического роста в условиях равновесия.
Отметим, что с увеличением темпа роста населения возрастает угловой коэффициент кривой (d+n)k , что приводит к уменьшению равновесного уровня фондовооруженности (k′*), следовательно, к падению у.
3. Экономический рост с учетом технического прогресса
Учет в модели Солоу технологического прогресса видоизменяет исходную производственную функцию. Производственная функция будет представлена как Y=F(K,LE), где E- эффективность труда, а LE - численность условных единиц труда с постоянной эффективностью Е. Чем выше Е, тем больше продукции может быть произведено данным числом работников. Предлагается, что технологический прогресс осуществляется путем роста эффективности труда Е с постоянным темпом g. Рост эффективности труда в данном случае аналогичен по результатам росту численности занятых: если технологический прогресс имеет темп g=2%, то, например, 100 рабочих могут произвести столько же продукции, сколько ранее производили 102 рабочих. Если теперь численность занятых (L) растет с темпом n, а Е растет с темпом g, то (LЕ) будет увеличиваться с темпом (n+g).
Включение технологического прогресса несколько меняет и анализ состояния устойчивого равновесия, хотя ход рассуждений сохраняется. Если определить k′ как количество капитала в расчете на единицу труда с постоянной эффективностью, т.е.
k′ =K/LE, а y′=Y/LE, то результаты роста эффективных единиц труда аналогичны росту численности занятых (увеличение количества единиц труда с постоянной эффективностью снижает величину капитала, приходящегося на одну такую единицу). В состоянии устойчивого равновесия (рис. 5) уровень фондовооруженности k′* уравновешивает, с одной стороны, влияние инвестиций, повышающих фондовооруженность, а, с другой стороны, воздействие выбытия, роста числа занятых и технологического прогресса, снижающих уровень капитала в расчете на эффективную единицу труда: sƒ(k′)=(d+n+g)k′.
В устойчивом состоянии (k′*) при наличии технологического прогресса общий объём капитала (К) и выпуска (У), будут расти с темпом (n+g). Но в отличие от случая роста населения, теперь будут расти с темпом g фондовооруженность (K/L) и выпуск (Y/L) в расчете на одного занятого; последнее может служить основой для повышения благосостояния населения. Технологический прогресс в модели Солоу является, следовательно, единственным условием непрерывного роста уровня жизни, поскольку лишь при его наличии наблюдается устойчивый рост выпуска на душу населения (у).
Характеристика основных переменных модели Солоу в состоянии устойчивого равновесия
При отсутствии роста населения и технологического прогресса |
При росте населения с темпом n |
При росте населения с темпом n и технологическом прогрессе с темпом g | |||
переменная |
темп роста |
переменная |
темп роста |
переменная |
темп роста |
L |
0 |
L |
n |
L |
n |
LЕ |
n + g | ||||
K |
0 |
K |
n |
K |
n + g |
k′ = K/LЕ |
0 | ||||
k = K/L |
0 |
k = K/L |
0 |
k = K/L |
g |
Y |
0 |
Y |
n |
Y |
n + g |
у′ = Y /LЕ |
0 | ||||
у= Y /L |
0 |
у= Y /L |
0 |
у= Y /L |
g |
Таким образом в модели Солоу найдено объяснение механизма непрерывного экономического роста в режиме равновесия при полной занятости ресурсов.
Как известно, в кейнсианских моделях норма сбережения задавалась экзогенно и определяла величину равновесного темпа роста дохода. В неоклассической модели Солоу при любой норме сбережения рыночная экономика стремится к соответствующему устойчивому уровню фондовооруженности (k*) и сбалансированному росту, когда доход и капитал растут с темпом (n+g). Поскольку равновесный экономический рост совместим с различными нормами сбережения, возникает проблема выбора оптимальной нормы сбережения.
Оптимальная норма накопления, соответствующая "золотому правилу" Э. Фелпса, обеспечивает равновесный экономический рост с максимальным уровнем потребления. Устойчивый уровень фондовооруженности, соответствующий этой норме накопления, обозначим k**, а потребления - с**.
Уровень потребления в расчете на одного занятого при любом устойчивом значении фондовооруженности k* определяется путем ряда преобразований исходного тождества: у=с+i. Выражаем потребление с через у и i и подставляем значения данных параметров, которые они принимают в устойчивом состоянии: с=у-i, с*=ƒ(k*)-dk*, где с* - потребление в состоянии устойчивого роста, а i=sƒ(k)=dk по определению устойчивого уровня фондовооруженности. Теперь из различных устойчивых уровней фондовооруженности (k*), соответствующих разным значениям s, необходимо выбрать такой, при котором потребление достигает максимума (рис. 6).
рис. 6. Экономический рост с учетом технического прогресса
Если выбрано k*k** увеличение объема выпуска меньше роста выбытия, т.е. потребление падает. Рост потребления возможен лишь до точки k**, где оно достигает максимума (производственная функция и кривая dk* имеют здесь одинаковый наклон). В этой точке увеличение запаса капитала на единицу даст прирост выпуска, равный предельному продукту капитала (МРК), и увеличит выбытие на величину d (износ на единицу капитала). Роста потребления не будет, если весь прирост выпуска будет использован на увеличение инвестиций для покрытия выбытия.
Таким образом, при уровне фондовооруженности, соответствующем "золотому правилу" (k**), должно выполняться условие: МРК=d (предельный продукт капитала равен норме выбытия), а с учетом роста населения и технологического прогресса: МРК=d+n+g.
Если экономика в исходном состоянии имеет запас капитала больший, чем следует по "золотому правилу", необходима программа по снижению нормы накопления. Эта программа обусловливает увеличение потребления и снижение инвестиций. При этом экономика выходит из состояния равновесия и вновь достигает его при пропорциях, соответствующих "золотому правилу".