Математическое моделирование

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 13:45, контрольная работа

Краткое описание

Математическая модель - это совокупность математических объектов и соотношений между ними, адекватно отображающая свойства и поведение исследуемого объекта.
Математика в самом общем смысле слова имеет дело с определением и использованием символических моделей. Математическая модель охватывает класс неопределяемых (абстрактных, символических) математических объектов таких, как числа или векторы, и отношения между этими объектами.

Вложенные файлы: 1 файл

matematicheskoe_modelirovanie.doc

— 135.00 Кб (Скачать файл)

При построении теоретических моделей используется физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа и т.д.

Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей. Экспериментальные модели - формальные. Они не учитывают всего комплекса физических свойств элементов исследуемой технической системы, а лишь устанавливают обнаруживаемую в процессе эксперимента связь между отдельными параметрами системы, которые удается варьировать и (или) осуществлять их измерение. Такие модели дают адекватное описание исследуемых процессов лишь в ограниченной области  пространства параметров, в которой осуществлялось варьирование параметров в эксперименте. Поэтому экспериментальные математические модели носят частный характер, в то время как физические законы отражают общие закономерности явлений и процессов, протекающих как во всей технической системе, так и в каждом ее элементе в отдельности. Следовательно, экспериментальные математические модели не могут быть приняты в качестве физических законов. Вместе с тем методы, применяемые для построения этих моделей широко используются при проверке научных гипотез.

Функциональные математические модели могут быть линейные и нелинейные. Линейные модели содержат только линейные функции величин, характеризующих состояние объекта при его функционировании, и их производных. Характеристики многих элементов реальных объектов нелинейные. Математические модели таких объектов включают нелинейные функции этих величин и их производных и относятся к нелинейным.

Если при моделировании учитываются инерционные свойства объекта и (или) изменение во времени объекта или внешней Среды, то модель называют динамической. В противном случае модель - статическая. Математическое представление  динамической модели в общем случае может быть выражено системой дифференциальных уравнений, а статической - системой алгебраических уравнений.

Если воздействие внешней Среды на объект носит случайный характер и описывается случайными функциями. В этом случае требуется построение вероятностной математической модели. Однако такая модель весьма сложная и ее использование при проектировании технических объектов требует больших затрат машинного времени. Поэтому ее применяют на заключительном этапе проектирования.

Большинство проектных процедур выполняется на детерминированных моделях. Детерминированная математическая модель характеризуется взаимно однозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие. В вычислительном эксперименте при проектировании обычно задают некоторые стандартные типовые воздействия на объект: ступенчатые, импульсные, гармонические, кусочно-линейные, экспоненциальные и др. Их называют тестовыми воздействиями.

 

Продолжение Таблицы “Классификация математических моделей

 

Виды математических моделей технических объектов

       

По учету физических свойств ТО

 

По способности прогнозирования результатов

         

Динамические

 

Детерминированные

     

Статические

 

Вероятностные

     

Непрерывные

   
     

Дискретные

   
     

Линейные

   
     

Нелинейные

   

 

 

Программирование.

На этом этапе выполняются следующие действия.

Составляется план создания и использования программной  модели. Как правило, программа модели создается с помощью средств автоматизации моделирования на ЭВМ. Поэтому в плане указываются: тип ЭВМ; средство автоматизации моделирования; примерные затраты памяти ЭВМ на создание программы модели и ее рабочих массивов; затраты машинного времени на один цикл работы модели; оценки затрат на программирование и отладку программы модели.

Затем исследователь приступает к программированию модели. В качестве технического задания на программирование служит описание имитационной модели. Специфика работ по программированию модели зависит от средств автоматизации моделирования, которые доступны исследователю. Не существует значительных отличий создания программы модели от обычной автономной отладки программных модулей большой программы или пакета программ, В соответствии с текстом производится деление модели на блоки и подблоки. В отличие от обычной автономной  отладки программных модулей, при автономной отладке блоков и  подблоков программной модели объем работ существенно увеличивается, поскольку для каждого модуля необходимо создать и отладить еще имитатор внешнего окружения. Весьма существенно выверить реализацию функций модуля в модельном времени t и оценить затраты машинного времени на один цикл работы модели как функцию от значений параметров модели. Завершаются работы при автономной отладке компонент модели подготовкой форм представления входных и выходных данных моделирования.

Далее переходят ко второй проверке достоверности программы модели системы. В процессе этой проверки устанавливается соответствие операций в программе и описании модели. Для этого производится обратный перевод программы в схему модели (ручная «прокрутка» позволяет найти грубые ошибки статики модели) .

После исключения грубых ошибок ряд блоков объединяется и  начинается комплексная отладка модели с использованием тестов. Отладка по тестам начинается с нескольких блоков, затем  в этот процесс вовлекается все большее число блоков модели. Отметим, что комплексная отладка программы модели намного сложнее отладки пакетов прикладных программ, поскольку ошибки динамики моделирования в этом случае найти значительно труднее вследствие квазипараллельной работы различных компонент модели. По завершении комплексной отладки программы модели необходимо вновь оценить затраты машинного времени на один цикл расчетов на модели. При этом полезно получить аппроксимацию времени моделирования на один цикл имитации.

Следующим действием является составление технической документации на модель сложной системы. Результатом этапа к моменту окончания комплексной отладки программы модели должны быть следующие документы:

  • описание имитационной модели;
  • описание программы модели с указанием системы программирования и принятых обозначений;
  • полная схема программы модели;
  • полная запись программы модели на языке моделирования;
  • доказательство достоверности программы модели (результаты комплексной отладки программы модели);
  • описание входных и выходных величин с необходимыми пояснениями (размерностей, масштабов, диапазонов изменения величин, обозначений);
  • оценка затрат машинного времени на один цикл моделирования;
  • инструкция по работе с программой модели.

Для проверки адекватности модели объекту исследования после составления формального описания системы исследователь составляет план проведения натурных экспериментов с прототипом системы. Если прототип системы отсутствует, то можно использовать систему вложенных ИМ, отличающихся друг от друга степенью детализации имитации одних и тех же явлений. Тогда более детальная модель служит в качестве прототипа для обобщенной ИМ. Если же построить такую последовательность невозможно либо из-за отсутствия ресурсов на выполнение этой работы, либо из-за недостаточности информации, то обходятся без проверки адекватности ИМ. Согласно этому плану параллельно с отладкой ИМ осуществляется серия натурных экспериментов на реальной системе, в ходе которых накапливаются контрольные результаты. Имея в своем распоряжении контрольные результаты и результаты испытаний ИМ, исследователь проверяет адекватность модели объекту.

При обнаружении ошибок на этапе отладки, устранимых только на предыдущих этапах, может иметь место возврат на предыдущий этап. Кроме технической документации к результатам этапа прилагается машинная реализация модели (программа, оттранслированная в машинном коде ЭВМ, на которой будет происходить имитация).

Испытание модели.

Это важный этап создания модели. При этом необходимо выполнить следующее. Во-первых, убедиться в правильности динамики развития алгоритма моделирования объекта исследования в ходе имитации его функционирования (провести верификацию модели). Во-вторых, определить степень адекватности модели и объекта исследования. Под адекватностью программной имитационной модели реальному объекту понимают совпадение с заданной точностью векторов характеристик поведения объекта и модели. При отсутствии адекватности проводят калибровку имитационной модели («подправляют» характеристики алгоритмов компонент модели).

Наличие ошибок во взаимодействии компонент модели возвращает исследователя к этапу создания имитационной модели. Возможно, что в ходе формализации исследователь слишком упростил физические явления, исключил из рассмотрения ряд важных сторон функционирования системы, что привело к неадекватности модели объекту. В этом случае исследователь должен вернуться к этапу формализации системы. В тех случаях, когда выбор способа формализации оказался неудачным, исследователю необходимо повторить этап составления концептуальной модели с учетом новой информации и появившегося опыта. Наконец, когда у исследователя оказалось недостаточно информации об объекте, он должен вернуться к этапу составления содержательного описания системы и уточнить его с учетом результатов испытания предыдущей модели системы.

Исследование свойств имитационной модели.

При этом оцениваются точность имитации явлений, устойчивость результатов моделирования, чувствительность критериев качества к изменению параметров модели. Получить эти оценки в ряде случаев бывает весьма сложно. Однако без успешных результатов этой работы доверия к модели не будет ни у разработчика, ни у заказчика ИМ. У разных исследователей в зависимости от вида ИМ сложились различные интерпретации понятий точности, устойчивости, стационарности, чувствительности ИМ. Пока не существует общепринятой теории имитации явлений на ЭВМ. Каждому исследователю приходится полагаться на свой опыт организации имитации и на свое понимание особенностей объекта моделирования.

Точность имитации явлений представляет собой оценку влияния стохастических элементов на функционирование модели сложной системы.

Устойчивость результатов моделирования характеризуется сходимостью контролируемого параметра моделирования к определенной величине при увеличении времени моделирования варианта сложной системы.

Стационарность режима моделирования характеризует собой некоторое установившееся равновесие процессов в модели системы, когда дальнейшая имитация бессмысленна, поскольку новой информации из модели исследователь не получит и продолжение имитации практически приводит только к увеличению затрат машинного времени. Такую возможность необходимо предусмотреть и разработать способ определения момента достижения стационарного режима моделирования. Чувствительность ИМ представляется величиной минимального приращения выбранного критерия качества, вычисляемого по статистикам моделирования, при последовательном варьировании параметров моделирования на всем диапазоне их изменений.

Эксплуатация имитационной модели.

Этот этап начинается с составления плана эксперимента, позволяющего исследователю получить максимум информации при минимальных усилиях на вычисление. Обязательно статистическое обоснование плана эксперимента. Планирование эксперимента представляет собой процедуру выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом существенно следующее: стремление к минимизации общего числа опытов, обеспечение возможности одновременного варьирования всеми переменными; использование математического аппарата, формализующего многие действия экспериментаторов; выбор четкой стратегии, позволяющей принимать обоснованные решения после каждой серии экспериментов на модели.

Затем исследователь приступает к проведению рабочих расчетов на модели. Это весьма трудоемкий процесс, требующий больших затрат ресурса ЭВМ и обилия канцелярской работы. Отметим, что уже на ранних этапах создания ИМ необходимо тщательно продумывать состав и объемы информации моделирования, чтобы существенно облегчить дальнейший анализ результатов имитации. Итогом работы являются результаты моделирования.

Анализ результатов моделирования.

Данный этап завершает технологическую цепочку этапов создания и использования имитационных моделей. Получив результаты моделирования, исследователь приступает к интерпретации результатов. Здесь возможны следующие циклы имитации. В первом цикле имитационного эксперимента в ИМ заранее предусмотрен выбор вариантов исследуемой системы путем задания начальных условий имитации для машинной программы модели. Во втором цикле имитационного эксперимента модель модифицируется на языке моделирования, и поэтому требуются повторная трансляция и редактирование программы.                                 

Информация о работе Математическое моделирование