Автор работы: Пользователь скрыл имя, 25 Июня 2012 в 16:22, курсовая работа
Итак, целью работы будет изучения модели Леонтьева «затраты-издержки», универсальность которой представляет редкостное явление, её математической интерпретации макроэкономического равновесия и экономического роста (ведь равновесие всегда выходит на первый план в масштабах всей экономики). Для этого необходимо рассмотреть специфику межотраслевого баланса как балансового метода, а также проследить его историческое развитие, выразившееся, в конечном счете, в модели «затраты-выпуск» Леонтьева.
Введение 3
ГЛАВА I Межотраслевой баланс как вид балансовых моделей 4
§1.1. Экономико-математические модели: сущность и виды 4
§1.2 Возникновение и развитие метода «затраты – выпуск» 7
§1.3. Научная деятельность Леонтьева 10
ГЛАВА II Содержание модели межотраслевого баланса 15
§2.1 Статическая модель МОБ: квадранты, основные тождества, виды соотношений, учтенных в балансе 15
§2.2 Технологическая матрица как основа МОБ 18
§2.3 Динамические модели экономики типа "затраты-выпуск" 22
ГЛАВА III Практическое применение метода «затраты –выпуск» 26
§3.1 Возможности методологии Леонтьева 26
§3.2. Достоинства и недостатки леонтьевского метода 30
§ 3.3 . Влияние В. Леонтьева экономическую практику в нашей стране 32
ГЛАВА IV Пример расчета межотраслевого баланса 37
§4.1. Построение межотраслевого баланса производства и распределения продукции 37
§4.2. Построение межотраслевого баланса затрат труда 39
§4.3. Методика прогнозирования структуры общественного производства на основе межотраслевого баланса 40
Заключение 46
Список литературы 49
Чтобы выяснить экономический смысл элементов матрицы В = (bij), будем задаваться единичными векторами конечного продукта:
|| 1 || || 0 || || 0 ||
|| 0 || || 1 || || 0 ||
Y1 = ||... ||, Y2 = ||....||,..., Yn = ||... || .
|| 0 || || 0 || || 1 ||
Тогда соответствующие векторы валового выпуска будут:
||s11|| ||s12|| ||s1n||
||s21|| ||s22|| ||sn2||
Y1 = ||.. .||, Y2 =||... ||, ..., Yn = ||... ||.
||sn1|| ||sn2|| ||snn||
Следовательно, каждый элемент bij матрицы B есть величина валового выпуска продукции i-й отрасли, необходимого для обеспечения выпуска единицы конечного продукта j-й отрасли.
В соответствии с экономическим смыслом задачи значения xi должны быть неотрицательны при неотрицательных значениях yi и aij.
Необходимо отметить, что прежде чем воспользоваться методом Леонтьева, нужно определить продуктивна ли матрица. Матрица А называется продуктивной, если для любого вектора Y существует решение X уравнения (E - A) X = Y. В этом случае и модель Леонтьева называется продуктивной (9).
Существует несколько критериев продуктивности матрицы А. Один из них говорит о том, что матрица А продуктивна, если максимум сумм элементов ее столбцов не превосходит единицы, причем хотя бы для одного из столбцов сумма элементов строго меньше единицы. Но данное условие является только достаточным.
К необходимым же и достаточным условиям относят следующие (11,241):
1. матрица (E-A) неотрицательно обратима, т.е. существует обратная матрица (E-A) ≥0;
2. матричный ряд E + A +A²+A³ +…=∑ Aκ сходиться, причём его сумма равна обратной матрице (E-A);
Вычислительные аспекты
решения задач на основе модели межотраслевого
баланса будут
Рассмотренная выше межотраслевая
модель является статической, т.е. такой
в которой все зависимости
отнесены к одному моменту времени.
Такие модели могут разрабатываться
лишь для отдельно взятых периодов,
причём в рамках данных моделей не
устанавливается связь с
§2.3 Динамические модели экономики типа "затраты-выпуск"
В процессе совершенствования и усложнения модели «затраты—выпуск» был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.
В отличие от статических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.
В рассматриваемой ниже динамической
модели (которая является развитием
статической межотраслевой
Ниже приведена схема первых двух квадрантов динамического межотраслевого баланса (11,255).
Таблица 1 Динамическая модель МОБ
Производ
отрасли Потребляющие отрасли
Межотр. потоки текущих затрат Межотрас потоки капитальных вложений Конечный продукт Валовый продукт
1 2 … n 1 2 . n
1 x11 x12… x1n ∆Ф11∆Ф12 … ∆Ф1n Y1 X1
2 x21 x22 …x2n ∆Ф2 ∆Ф22 … ∆Ф2n Y2 X2
… . . … . . . … . . .
n xn1 xn2 … xnn ∆Фn1 ∆Фn2 … ∆Фnn Yn Xn
Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами xij совпадает с соответствующей матрицей статистического баланса. Элементы второй матрицы ∆Фij показывают, какое количество продукции i-той отрасли направлено в текущем периоде в j-ую отрасль в качестве производственных капитальных вложений в её основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей, транспортных средств и др.
Для сравнения, в статистическом балансе потоки капиталовложений не дифференцируются по отраслям-потребителям и отражаются общей величиной в составе конечной продукции Yi каждой i-той отрасли. В динамической схеме конечный продукт Yi включает продукцию i-той отрасли, идущую в личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершённого строительства, на экспорт. Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статистического баланса (1,141):
∑∆Фij + Yi’= Yi
поэтому уравнение распределения продукции вида (1.2) преобразуется в динамическом балансе в следующее (11,257):
Xi =∑xij +∑∆Фij + Yi’ i=1…n (3.1)
Межотраслевые потоки текущих затрат выражают как и в статической модели через валовую продукцию отраслей с помощью коэффициентов прямых материальных затрат:
xij = aijXj
полагая, что прирост продукции пропорционален приросту производственных фондов, можно записать (11,257):
∆Фij =φij∆Xj i,j =1…n (3.2)
φij – коэффициенты пропорциональности, экономический смысл их заключается в том, что они показывают, какое количество продукции i-той отрасли должно быть вложено в j-тую отрасль для увеличения производственной мощности j-той отрасли на единицу продукции. Предполагается, что производственные мощности используются полностью и прирост продукции равен приросту мощности. Коэффициенты φij называются коэффициентами вложений, или коэффициентами приростной фондоёмкости.
Они образуют квадратную матрицу n-го порядка (13):
||φ11 φ12 … φ1n ||
||φ21 φ22 … φ2n ||
(φij) =
|| . . … . ||
||φn1 φn2 … φnn ||
Эта матрица коэффициентов приростной фондоёмкости даёт значительный материал для экономического анализа и планирования капитальных вложений.
Далее, с помощью коэффициентов прямых материальных затрат и коэффициентов вложений φij систему уравнений (3.1) можно представить в следующем виде (11,257):
Xi = ∑aijXj + ∑φij∆Xj + Yi’ i=1…n (3.3)
Учитывая, что все объёмы валовой и конечной продукции относятся к некоторому периоду t, а прирост валовой продукции определён в сравнении с (t-1)-м периодом (11,258):
Xi(t) = ∑aijXj(t) + ∑φij(Xj(t) – Xj(t-1)) + Yi’(t)
Отсюда можно записать следующие соотношения:
Xi(t) = ∑(aij+ φij) Xj(t) - ∑φij Xj(t-1) + Yi’(t) , i=1…n (3.4)
Пусть нам известны уровни валовой продукции всех отраслей в предыдущем периоде (величины Xj(t-1) и конечный продукт отраслей в t-м периоде. Тогда соотношения (3.4) представляют собой систему n линейных уравнений с n неизвестными уровнями производства t-го периода.
Таким образом, решение динамической системы линейных уравнений позволяет определить выпуск продукции в последующем периоде в зависимости от уровня , достигнутого в предыдущем периоде. Связь между периодами устанавливается через коэффициенты вложений φij, характеризующие фондоёмкость единицы прироста продукции.
Эти более сложные по своему
экономическому содержанию выводы из
анализа динамической модели В. Леонтьева
были опубликованы в форме дифференциальных
уравнений в СССР в 1958 г. книге
«Исследование структуры
ГЛАВА III Практическое применение метода «затраты –выпуск»
§3.1 Возможности методологии Леонтьева
Нужно отметить, что В. Леонтьев занимался разнообразными направлениями теоретического анализа и экономической политики. Диапазон его научных интересов чрезвычайно широк: анализ теорий Маркса и Кейнса, математика в экономике, теории денег и цен, международная торговля, статистические индексы, механизм спроса и предложения, экономические циклы, машины и человек, эффективность концентрации производства, экономическая оценка и выбор направлений технического прогресса, отношения между развитыми и развивающимися странами, экономика и планирование в СССР. Перечень трудно завершить. Эти исследования В. Леонтьев обобщил в двух томах «Экономических эссе», вышедших в 1966 и 1977 гг., а затем переведенных на французский, испанский, итальянский, японский, венгерский языки. В 1990 г. «Экономические эссе» были опубликованы на русском языке.
Логика исследовательского
поиска вывела В.В. Леонтьева на мировой
уровень экономики. Применив новую
методику, В. В. Леонтьев доказал, что
если принять во внимание весь комплекс
прямых и косвенных затрат, то экспорт
из США оказывается более
Итак, В. Леонтьев непрерывно работал над расширением сферы применения методологии межотраслевого анализа: экономическая динамика и инвестиционные процессы, взаимодействие экономики и окружающей среды, межрегиональные и внешнеэкономические связи, экономика вооружений и конверсии, воздействие автоматизации на занятость и структуру экономики. Рассмотрим некоторые вопросы более подробно:
1. взаимодействие экономики и окружающей среды
действительно, профессор Леонтьев принадлежит к первому ряду ученых-экономистов, выразивших озабоченность состоянием окружающей среды. Здесь его отличает удивительное остроумие в распространении метода «затраты-выпуск» на новые, качественно разнообразные области исследования. Так им была создана модель взаимодействия экономики и окружающей среды (введение в матрицу межотраслевых связей коэффициентов выпуска и уничтожения загрязнителей) и глобальная межотраслевая модель (соединение матриц регионов мира с коэффициентами структуры мировой торговли). Многие экономисты потом удивлялись простоте, даже примитивности найденных модельных конструкций, но почему-то такие решения раньше никому не приходили в голову. Используя опыт моделирования, Леонтьев показывал взаимосвязь, существующую между хозяйственной активностью и состоянием среды обитания. Еще в своей Нобелевской лекции, посвященной проблемам мировой экономики в свете шахматных балансов, он выделил загрязнение окружающей среды в самостоятельный сектор шахматного баланса. Задача состояла в доказательстве того, что введение строгих мировых стандартов необходимо и неизбежно, а с точки зрения экономической эффективности даст возможность развивающимся странам заметно повысить занятость, хотя и потребует некоторых жертв со стороны потребления. Особым вниманием к экологическому фактору проникнута и книга «Будущее мировой экономики».
В работе содержится группировка стран и регионов, находящихся, судя по основным экономическим показателям, на разных ступенях развития, и предлагаются два альтернативных сценария их развития к 2000 г. Предполагалось, например, что разрыв между индустриально развитыми и развивающимися странами в доходе на душу населения сократится с 12 : 1 до 7 : 1.
Экспертные оценки свидетельствовали о том, что расходы на борьбу с загрязнением окружающей среды напрямую зависят от размера душевого дохода. В странах Африки, страдающих от засухи и эрозии почвы, доход на душу населения не превышал в 1970 г. 167 долл. в год против 2000—4000 долл. в мире индустриально развитых государств. Согласно прогнозу, душевой доход в странах засушливой Африки должен повыситься до 436 долл. Но темпы выброса твердых отходов будут в странах с низким доходом все же возрастать на 6% в год, содержание вредных примесей в воде — на 7% в год, между тем как темпы загрязнения воздуха и воды в Северной Америке и Европе останутся до конца века примерно на том же уровне (2—3%), со слегка понижательной тенденцией. Что касается капитальных затрат в очистном секторе, то их доля по отношению к совокупному капиталу повысится в Западной Европе до 3,9%, почти до 4% — в Японии, до 2,6% — в Советском Союзе (в 1970 г. последний показатель, поданный ООН, составлял 1,3%) (14).
Разумеется, прогнозы содержали приблизительные оценки и основывались на том видении мира, которое господствовало среди ученых в середине 70-х гг. Предвосхитить глобальные социально-политические сдвиги, которыми характеризовалось последнее десятилетие, было весьма затруднительно.
В целом прогноз относительно
более быстрого экономического роста
развивающихся стран
Не оправдался прогноз развития стран «централизованно планируемой экономики». Составлявшая в 1970 г. их доля в мировом материальном производстве — 21% — должна была увеличиться до 27% к 1990 г. и до 29% к 2000 г.(14)
2. Экономика вооружений и конверсии.
Василия Васильевича часто
бывал на международных конференциях,
посвященных экономике