Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 00:45, контрольная работа
Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения.
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СЕРВИСА»
По дисциплине: Безопасность труда
На тему: Ионизирующие излучения, их воздействие на человека, нормирование ионизирующих излучений.
Работу выполнил
студент гр. СКРз-502
Брынза Н.О.
Номер зачетной книжки
208/032
Проверил: Выбойщик М.А.
Тольятти 2012 г.
Содержание.
Введение......................
1. Ионизирующие излучения: их виды
и величины......................
1.1. Единицы измерения излучений...
2. Воздействие ионизирующих излучений
на организм человека......................
3.Защита от ионизирующих излучений. Нормирование ионизирующих излучений........11
Заключение....................
Список литературы.............
Введение.
Радиоактивность – отнюдь не новое явление; новизна состоит лишь в том, как люди
пытались ее использовать. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы сейчас полагаем, началось существование нашей Вселенной около 20 миллиардов лет назад. С того времени радиация наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже человек слегка радиоактивен, так как во всякой живой ткани присутствует в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального открытия прошло лишь немногим более ста лет.
В 1896 году французский ученый Анри Беккерель положил несколько фотографических пластинок в ящик стола, придавив их кусками какого-то материала, содержащего уран. Когда он проявил пластинки, то, к своему удивлению, обнаружил на них следы каких-то излучений, которые он приписал урану. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова “радиоактивность”. В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает “испускающий лучи”. И открытие Беккереля, и исследования супругов Кюри были подготовлены более ранним, очень важным событием в научном мире – открытием в 1895 году рентгеновских лучей; эти лучи были названы так по имени открывшего их (тоже, в общем, случайно) немецкого физика Вильгельма Рентгена. Беккерель один из первых столкнулся с самым неприятным свойством радиоактивного излучения: речь идет о его воздействии на ткани живого организма. Ученый положил пробирку с радием в карман и получил в результате ожог кожи. Мария Кюри умерла, по всей видимости, от одного из злокачественных заболеваний крови, поскольку слишком часто подвергалась воздействию радиоактивного излучения. По крайней мере 336 человек, работавших с радиоактивными материалами в то время, умерли в результате облучения.
Несмотря на это, небольшая группа талантливых и большей частью молодых ученых
направила свои усилия на разгадку одной из самых волнующих загадок всех времен, стремясь проникнуть в самые сокровенные тайны материи.
1. Ионизирующие излучения: их виды и величины.
Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. Они возникают в результате естественных или искусственных радиоактивных распадов веществ, ядерных реакций деления в реакторах, ядерных взрывов и некоторых физических процессов в космосе.
Ионизирующие излучения состоят из прямо или косвенно ионизирующих частиц или смеси тех и других. К прямо ионизирующим частицам относятся частицы (электроны, альфа-частицы, протоны и др.), которые обладают достаточной кинетической энергией, чтобы осуществить ионизацию атомов путём непосредственного столкновения. К косвенно ионизирующим частицам относятся незаряженные частицы (нейтроны, кванты и т.д.), которые вызывают ионизацию через вторичные объекты.
В настоящее время известно около 40 естественных и более 200 искусственных альфа-активных ядер. альфа-распад характерен для тяжелых элементов (урана, тория, полония, плутония и др.). альфа-частицы - это положительно заряженные ядра гелия. Они обладают большой ионизирующей и малой проникающей способностью и двигаются со скоростью 20000 км/с.
бета-излучение - это поток отрицательно заряженных частиц (электронов), которые выпускаются при бета-распаде радиоактивных изотопов. Их скорость приближается к скорости света. Бета-частицы при взаимодействии с атомами среды отклоняются от своего первоначального направления. Поэтому путь, проходимый бета-частицей в веществе, представляет собой не прямую линию, как у альфа-частиц, а ломаную. Наиболее высокоэнергетические бета-частицы могут пройти слой алюминия до 5 мм, однако ионизирующая способность их меньше, чем у альфа-частицы.
гамма-излучение, испускаемое атомными ядрами при радиоактивных превращениях, обладает энергией от нескольких тысяч до нескольких миллионов электрон-вольт. Распространяется оно, как и рентгеновское излучение, в воздухе со скоростью света. Ионизирующая способность гамма-излучения значительно меньше, чем у альфа- и бета-частиц. гамма-излучение - это электромагнитные излучения высокой энергии. Оно обладает большой проникающей способностью, изменяющейся в широких пределах.
Все ионизирующие излучения по своей
природе делятся на фотонные (квантовые)
и корпускулярные. К фотонному (квантовому)
ионизирующему излучению
К корпускулярному ионизирующему
излучению относят альфа-
Нейтронное и
гамма излучение принято
Ионизирующие излучения по своему
энергетическому составу
1.1. Единицы измерения излучений.
Единицей измерения радиоактивности служит беккерель (Бк, Bq). Один беккерель равен одному распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м). Часто используют внесистемную единицу - кюри (Ки, Ci). Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7.1010 Бк.
Соотношения между единицами измерения приведены ниже в таблице.
Величина |
Наименование и обозначение единицы измерения |
Соотношения между единицами | |
СИ |
Внесистемные |
||
Активность радионуклида |
Беккерель (Бк, Bq) |
Кюри (Ки, Ci) |
1 Бк=2.7 10-11Ки 1 Ки=3.7 1010Бк |
Эквивалентная доза |
Зиверт (Зв, Sv) |
Бэр (бэр, rem) |
1 Зв=100 бэр 1 бэр=10-2Зв |
Широко известная внесистемная единица рентген (Р, R) служит для определения экспозиционной дозы. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см3 воздуха образуется 2.109 пар ионов. 1 Р = 2, 58.10-4 Кл/кг.
Чтобы оценить действие излучения на вещество, измеряют поглощенную дозу, которая определяется как поглощенная энергия на единицу массы. Единица поглощенной дозы называется рад. Один рад равен 100 эрг/г. В системе СИ используют другую единицу - грей (Гр, Gy). 1 Гр = 100 рад = 1 Дж/кг.
Биологический эффект различных видов излучения неодинаков. Это связано с отличиями в их проникающей способности и характере передачи энергии органам и тканям живого организма. Поэтому для оценки биологических последствий используют биологический эквивалент рентгена - бэр. Доза в бэрах эквивалентна дозе в радах, умноженной на коэффициент качества излучения. Для рентгеновских, бета- и гамма-лучей коэффициент качества считается равным единице, то есть бэр соответствует раду. Для альфа-частиц коэффициент качества равен 20 (это означает, что альфа-частицы вызывают в 20 раз более сильное повреждение живой ткани, чем та же поглощенная доза бета- или гамма-лучей). Для нейтронов коэффициент составляет от 5 до 20 в зависимости от энергии. В системе СИ для эквивалентной дозы введена специальная единица, называемая зиверт (Зв, Sv). 1 Зв = 100 бэр. Эквивалентная доза в зивертах соответствует поглощенной дозе в греях, умноженной на коэффициент качества.
2. Воздействие ионизирующих излучений на организм человека.
В результате воздействия ионизирующих излучений на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы. Ионизирующие излучения вызывают ионизацию атомов и молекул вещества, в результате чего молекулы и клетки ткани разрушаются.
Известно, что 2/3 общего состава ткани человека составляют вода и углерод. Вода под воздействием излучения расщепляется на водород Н и гидроксильную группу ОН, которые либо непосредственно, либо через цепь вторичных превращений образуют продукты с высокой химической активностью: гидратный окисел НО2 и перекись водорода Н2O2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.
В результате воздействия ионизирующих
излучений нарушается нормальное течение
биохимических процессов и
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении, когда источник облучения находится вне организма, так и при внутреннем облучении, когда радиоактивные вещества попадают внутрь организма, например, ингаляционным путем — при вдыхании или при заглатывании с пищей или водой.
Биологическое действие ионизирующего излучения зависит от величины дозы и времени воздействия излучения, от вида радиации, размеров облучаемой поверхности и индивидуальных особенностей организма.
0—25 рад – видимых нарушений нет.
25—50 рад – возможны изменения в крови.
50—100 рад – изменения в крови, нормальное состояние трудоспособности нарушается.
100—200 рад – нарушение нормального состояния, возможна потеря трудоспособности. Первая реакция возникает через 2-3 ч, возникает несильная тошнота с рвотой, проходит в день облучения.
200—400 рад – проявляется через 1-2 ч, длится сутки, сопровождается рвотой, слабостью, недомоганием; 100% выздоровление при условии лечения.
400—500 рад – реакция через 20-40 мин. Многократная рвота, сильное недомогание, температура до 38° С. Выздоровление у 50-80% пострадавших при условии специального лечения.
600 рад и более – реакция через 20-30 мин. Эритема кожи и слизистых, жидкий стул, температура выше 38° С. Выздоровление у 30-50% пострадавших при условии специального лечения.
При облучении дозами, в 100—1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения.
Степень поражения организма зависит
от размера облучаемой поверхности.
С уменьшением облучаемой поверхности
уменьшается и опасность
Индивидуальные особенности
Степень опасности поражения зависит также от скорости выведения радиоактивного вещества из организма. Не задерживаются на длительное время быстро обращающиеся в организме вещества (вода, натрий, хлор) и вещества, не усваиваемые организмом, а также не образующие соединений, входящих в состав тканей (аргон, ксенон, криптон и др.). Некоторые радиоактивные вещества почти не выводятся из организма и накапливаются в нем.
При этом одни из них (ниобий, рутений и др.) равномерно распределяются в организме, другие сосредоточиваются в определенных органах (лантан, актиний, торий — в печени, стронций, уран, радий — в костной ткани), приводя их к быстрому повреждению..