Автор работы: Пользователь скрыл имя, 09 Июня 2015 в 19:39, реферат
Современная очистка сточных вод подразумевает полное или максимально возможное удаление загрязнений, примесей и вредных веществ.
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические. Когда они применяются вместе, то метод обработки сточных вод называется комбинированным.
Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Введение
1. Физико-химические методы очистки сточных вод
1.1 Основные методы очистки
1.2 Флотация
1.3 Сорбция
1.4 Ионообменный метод очистки воды
Заключение
Список использованных источников
ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ
Содержание
Введение
1. Физико-химические методы очистки сточных вод
1.1 Основные методы очистки
1.2 Флотация
1.3 Сорбция
1.4 Ионообменный метод очистки воды
Заключение
Список использованных источников
Современная очистка сточных вод подразумевает полное или максимально возможное удаление загрязнений, примесей и вредных веществ.
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические. Когда они применяются вместе, то метод обработки сточных вод называется комбинированным.
Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Сущность механического метода состоит в том, что из сточных вод путём отстаивания и фильтрации удаляются механические примеси.
Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.
При физико-химическом методе обработки из сточных вод удаляются тонкодисперсные и растворённые неорганические примеси и разрушаются органические и плохо окисляемые вещества. К физико-химическим методам относятся: коагуляция, флотация, центрифугирование, электролиз, разделение на мембранах, адсорбция, ионный обмен, флюидизация, окисление и восстановление, нейтрализация и реминерализация, обмен газ-жидкость. Чаще всего из физико-химических методов применяется коагуляция, окисление и восстановление, сорбция, экстракция, электролиз, разделение на мембранах. Загрязнённые сточные воды очищают также с помощью ультразвука, озона, ионообменных смол и высокого давления. Хорошо зарекомендовала себя очистка путём хлорирования.
1. Физико-химические методы очистки сточных вод
1.1 Основные методы очистки
Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.
В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются:
1. флотация,
2. сорбция,
. ионообменная и электрохимическая очистка,
. гиперфильтрация,
. нейтрализация,
. экстракция,
. эвапорация.
1.2 Флотация
Флотация предназначена для извлечения из воды гидрофобных частиц (нефтепродукты) пузырьками газа, подаваемого в сточную воду. В основе этого процесса имеет место молекулярное слипание частиц масла и пузырьков тонкодиспергированного в воде газа. Образование агрегатов «частица - пузырьки газа» зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т. п.
Флотация - метод извлечения из жидкости диспергированных и коллоидных включений, основанный на способности частиц прилипать к газовым пузырькам (образуя флотокомплексы) и переходить вместе с ними в пенный слой. Сущность флотационного процесса заключается в специфическом действии молекулярных сил, вызывающих слипание частиц примесей с пузырьками газа, всплывание флотокомплексов и образованию на поверхности жидкости пенного слоя, содержащего извлеченные вещества. Слипание пузырьков воздуха происходит только с гидрофобными частицами (несмачиваемыми водой) или частицами, имеющими гидрофобные участки поверхности. Следовательно, для интенсификации флотационного процесса рекомендуется использовать реагенты, которые, находясь в воде, сорбируются на поверхности частиц, понижая их смачиваемость, а значит, повышают гидрофобизацию загрязнений. Кроме того следует отметить, что понижение поверхностного натяжения повышает эффект флотационной очистки воды. Образование флотокомплексов (агрегатов «частица - пузырьки газа») зависит от интенсивности их столкновения друг с другом, химического взаимодействия в зависимости от способа образования пузырьков газа различают следующие виды флотации: напорную, пневматическую, механическую, электрофлотацию, пенную, химическую, вибрационную, биологическую и др.
В настоящее время на станциях очистки широко используют напорную, пневматическую и электрофлотацию. содержащихся в воде веществ, ыпаривание, испарение и кристаллизация.
Вид содержащихся в воде загрязнений определяет характер флотационной обработки: одним воздухом или воздухом в сочетании с различными реагентами, прежде всего коагулянтами. Использование коагулянтов позволяет значительно повысить эффективность флотационной очистки и удалять загрязнения находящиеся в воде в виде стойких эмульсий и взвесей, а также в коллоидном состоянии.
Метод пневматической флотации. Данный метод основан на подаче сжатого газа (воздуха) в аэрационно-распределительную систему флотокамеры. Аэрационная система представляет собой мелкопузырчатые аэраторы различных типов - мембранные дисковые аэраторы, перфорированные резиновые шланги, пористые трубы и пластины и т.д. Газ под давлением проходит через отверстия аэраторов и в виде пузырьков одинакового диаметра выходит в очищаемую жидкость. Пузырьки под действием силы Архимеда всплывают, встречая на своем пути частицы загрязнений и, образуя за счет равномерной подачи воздуха, образования пузырьков с одинаковыми размерами. Обстановка во флотационной камере спокойная, что обеспечивает надежный подъем флотокомплексов и получение устойчивого пенного продукта.
Метод напорной флотации. Сущность этого метода заключается в выделении пузырьков газа из пресыщенного раствора при перепаде давления. Газ выделяется в виде микропузырьков, зарождающихся непосредственно на частицах загрязнения, образуя прочные флотокомплексы. В данном методе во флотационную камеру подается два потока воды: очищаемая вода и рабочая жидкость (вода насыщенная растворенным газом в количестве 10% от общего потока). Рабочая жидкость готовится в сатураторе - аппарате, где происходит растворение газа. Рабочее давление в сатураторе составляет 3-9 Бар, время растворения не более 5 минут. В качестве рабочей жидкости может использоваться или исходная вода, но при этом усложняется эксплуатация, или очищенная вода, при этом увеличиваются габариты флотокамеры.
Основные достоинства и недостатки метода напорной флотации. Процесс напорной флотации отличается высокой эффективностью захвата мельчайшими пузырьками воздуха частиц загрязнений за счет того, что пузырьки выделяются из раствора непосредственно на загрязнениях, образуя хорошо сохраняющиеся флотокомплексы. Прочность флотокомплексов обеспечивается за счет малости размеров пузырьков, а также за счет того, что на одной частичке может образоваться несколько пузырьков. Однако скорость подъема таких флотокомплексов довольно низкая, а порой мельчайшие пузырьки не могут поднять частицу и комплекс находится во взвешенном состоянии, что можно увидеть при помощи стереомикроскопа. Таким образом, при напорной флотации обеспечивается прочное слипание пузырьков с загрязнениями, но при этом наблюдается небольшая скорость подъема образующихся флотокомплексов.
1.3 Сорбция
Сорбцию применяют для очистки жидкостей и газов от растворимых примесей. Процессы сорбции могут протекать: на поверхности (адсорбция); в объеме (абсорбция).
Адсорбция - называется процесс избирательного поглощения примесей из жидкостей или газов поверхностями твердых материалов - адсорбентов. Особенностью адсорбционных методов улавливания примесей является их относительно высокая эффективность в области малых концентраций примесей при значительных расходах перерабатываемых потоков.
Избирательное поглощение молекул поверхностью твердого адсорбента происходит вследствие воздействия на них неуравновешенных поверхностных сил адсорбента. Различают два вида адсорбции: физическая адсорбция, протекает за счет сил молекулярного взаимодействия, химическая адсорбция (хемосорбция), протекает за счет вступления в химическую реакцию молекулы поглощаемого вещества с молекулами поверхности адсорбента.
Процесс физической адсорбции обратимый, поэтому на практике после стадии адсорб, стадия десорбции. Необходимость десорбции обусловлена либо требованием регенерации адсорбента для его последующего использования в процессе адсорбции, либо необходимостью выделить целевой компонент в чистом или концентрированном виде. В качестве адсорбентов используют любые мелкодисперсные материалы: золу; торф; цеолиты; силикагели; опилки; шлаки и глину. Наиболее эффективный сорбент - активированный уголь.
Активированный уголь получают термической обработкой дерева, углей (каменного и бурого), антрацита и других углеродосодержащих веществ. Они изготавливаются и используются в виде гранул размером 2-5 мм. Угли, предназначенные для поглощения относительно крупных молекул примесей из жидкостей, должны иметь развитую структуру переходных пор. Активные угли, как правило, имеют хорошие адсорбционные свойства по отношению к молекулам органических веществ, но имеют низкую механическую прочность.
Силикагель получают термообработкой аморфного кремнезема. Мелкопористые силикагели обладают высокой адсорбционной способностью по отношению к молекулам влаги и более высокой по сравнению с активными углями механической прочностью. Выпускаются мелко-, средне- и крупнопористые силикагели. Другим типом неорганических адсорбентов, широко применяемых для осушки различных сред и иных процессов избирательной адсорбции, является активный оксид алюминия и алюмогели, свойства и область использования которых близки к силикагелям. Алюмогель - неорганический адсорбент, широко применяемый для осушки различных сред и иных процессов избирательной адсорбции, свойства и область использования алюмогеля близки к силикагелям.
Абсорбция - называется процесс извлечения компонента из одной фазы и растворение его в другой фазе - в поглотителе.
Требования, предъявляемые к поглотителю:
1. высокая поглотительная способность (высокой поглотительной способностью обладают такие поглотители, для которых давление насыщенных паров компонента над его раствором в поглотителе при температуре абсорбции мало);
2. поглотитель должен легко десорбироваться (регенерироваться);
. иногда должен обладать селективностью (т.е. поглощать только определенные компоненты);
. должен обладать низкой летучестью (низким давлением паров);
. он должен сохранять свои свойства в процессе работы;
. он должен быть дешевым и доступным;
. не должен оказывать коррозионного действия;
. обладать высоким коэффициентом массопередачи.
Обычно один поглотитель не обладает всеми требуемыми свойствами, поэтому следует выбирать абсорбент по основным свойствам.
Абсорберы представляют собой колонны, в которых протекает поглощающая жидкость, через которую пробулькивает очищаемый газ. Для обеспечения надежного контакта газа с жидкостью, а также увеличения времени пребывания газа в аппарате, в колонне находятся специальные тарелки и насадки. Наиболее просты по конструкции провальные тарелки, их разновидность - гофрированные провальные тарелки. Диаметр сливных отверстий равен 4 - 8 мм. Иногда применяют клапанные провальные тарелки. Их достоинством является то, что когда газ не проходит через колонну жидкость не протекает, т.е. такие тарелки более экономичные (рис.1.1).
Рис.1.1. Схема очистки сточных вод в поглотителе.
Заключение
В России широко осуществляются мероприятия по охране окружающей среды, в частности по очистке производственных сточных вод.
Одним из основных направлений работы по охране водных ресурсов является внедрение новых технологических процессов производства, переход на замкнутые (бессточные) циклы водоснабжения, где очищенные сточные воды не сбрасываются, а многократно используются в технологических процессах. Замкнутые циклы промышленного водоснабжения дадут возможность полностью ликвидировать сбрасываемые сточных вод в поверхностные водоемы, а свежую воду использовать для пополнения безвозвратных потерь.
В химической промышленности намечено более широкое внедрение малоотходных и безотходных технологических процессов, дающих наибольший экологический эффект. Большое внимание уделяется повышению эффективности очистки производственных сточных вод.
Информация о работе Очистка воды от примесей химическими методами