Автор работы: Пользователь скрыл имя, 29 Апреля 2015 в 21:12, реферат
К липидам относится широкий круг соединений,общими свойствами которых являются крайне низкая растворимость в воде и хорошая растворимость в аполярных растворителях, таких как жидкие углеводороды, хлороформ и др. Естественно, что к липидам относятся соединения, имеющие весьма различную химическую природу.
ОБМЕН ЛИПИДОВ
К липидам относится широкий круг соединений,общими свойствами которых являются крайне низкая растворимость в воде и хорошая растворимость в аполярных растворителях, таких как жидкие углеводороды, хлороформ и др. Естественно, что к липидам относятся соединения, имеющие весьма различную химическую природу.
1.1. Классификация и биологическая роль липидов
Существует несколько вариантов классификации липидов по их химической природе. Наиболее приемлемой, по-видимому, является следующая. Все липиды делятся на 4 большие группы:
1. Жирные кислоты и их производные.
2. Глицеролсодержащие липиды.
3. Липиды, не содержащие глицерола.
4. Соединения смешанной природы, имеющие в своем составе липидный компонент.
Дадим краткую характеристику химической природы соединениям, входящим в ту или иную группу, с указанием их основных функций в организме.
1.1.1. Жирные кислоты и их производные
Жирные кислоты - это алифатические карбоновые кислоты, число атомов углерода в них может достигать 22 - 24. Основная масса жирных кислот, входящих в организм человека и животных, имеют четное число атомов углерода, что обусловлено особенностями их синтеза. Жирные кислоты, как правило, имеют неразветвленную углеродную цепь. Они подразделяются на насыщенные жирные кислоты, не имеющие в своей структуре кратных углерод-углеродных связей, и ненасыщенные - имеющие в своей структуре двойные или тройные углерод-углеродные связи, причем тройные связи встречаются крайне редко.
Ненасыщенные жирные кислоты, в свою очередь, делятся на моноеновые, т.е. содержащие 1 кратную связь, и полиеновые содержащие несколько кратных связей (диеновые, триеновые и т.д.). Все природные ненасыщенные жирные кислоты имеют стереохимическую цис-конфигурацию. Природные ненасыщенные жирные кислоты обычно имеют тривиальные названия: олеиновая, пальмитоолеиновая, линолевая, линоленовая, арахидоновая и др. кислоты. Однако иногда удобнее пользоваться систематическими их наименованиями, отражающими особенности структуры каждого соединения. Так, олеиновая кислота называется цис-9-октадеценовой кислотой: из названия следует, что эта кислота имеет 18 атомов углерода, она содержит одну двойную связь, начинающуюся от девятого атома углерода цепи, и имеет цис-стереохимическую конфигурацию относительно этой двойной связи. Линолевая кислота по систематической номенклатуре называется как полностью цис-9, 12-октадекадиеновая кислота, а арахидоновая - полностью цис-5, 8,11,14-эйкозатетраеновая ( углеводород эйкозан содержит 20 атомов углерода ).
Жирные кислоты в организме выполняют несколько функций. Прежде всего это энергетическая функция, так как именно при их окислении выделяется основная масса энергии, заключенная в химических связях большей части липидов. Так, при окислении до конечных продуктов 1 моля стеариновой кислоты (1М - 284 г) выделяется 2632 ккал энергии. Жирные кислоты выполняют также структурную функцию, поскольку они входят в состав разнообразных более сложных по химическому строению липидов, таких как триацилглицерины или сфинголипиды. Кроме того, жирные кислоты выполняют в организме пластическую функцию, поскольку промежуточные продукты их окислительного распада используются в организме для синтеза других соединений. Так, из ацетил-КоА в гепатоцитах могут синтезироваться ацетоновые тела или холестерол, а эикозаполиеновые кислоты используется для синтеза биорегуляторов: простагландинов, тромбоксанов или лейкотриенов. или продукты их распада используются для синтеза
Особо следует отметить, что ряд полиненасыщенных высших жирных кислот относятся к незаменимым компонентам пищи, поскольку они не синтезируются в организме. Обычно к эссенциальным высшим жирным кислотам относят линолевую, линоленовую и арахидоновую кислоты.
1.1.1.1. Производные высших жирных кислот
Важную роль в регуляции функционирования клеток различных органов и тканей играют производные эйкозаполиеновых кислот -так называемые эйкозаноиды. К ним относятся простагландины, простациклины, тромбоксаны и лейкотриены. Первые три группы соединений объединяют также в группу простаноидов.
Эйкозаполиеновые кислоты - это высшие жирные кислоты с 20 атомами углерода в цепи и имеющие в своей структуре несколько двойных связей. Главными преставителями этих кислот являются:
а). Полностью цис-8,11,14-эйкозатриеновая кислота,
б). Полностью цис-5,8,11,14-
в). Полностью цис-5,8,11,14,17-
Каждая из перечисленных кислот является родоначальников своего ряда эйкозаноидов, причем эти ряды отличаются друг от друга числом двойных связей в боковых цепях. Так, различают простатландины ПГ1, ПГ2 и ПГ3, имеющие в свой структуре соответственно одну, две или три двойных связи. Как правило, в структуре простаноидов на две двойных связи меньше, чем в исходной эйкозаполиеновой кислоте.
Все простаноиды образуются в ходе циклооксигеназного пути метаболизма эйкозаполиеновых кислот и в своем составе имеют ту или иную циклическую структу. Лейкотриены образуются на липоксигкназном пути превращений эйкозаполиеновых кислот, они содержат в своей структуре систему из сопряженных двойных связей и не имеют в структуре цикла.
Простагландины имеют в своем составе пятичленный углеродный цикл, к которому могут быть присоединены различные дополнительные группы, в зависимости от характера которых различают несколько типов простаглагландинов: простагландины А,В и т.д.
Простагландины относится к биорегуляторам паракринной системы. При низких концентрациях порядка нанограммов/мл они вызывают сокращение гладкой мускулатуры у животных, простагландины участвуют в развитии воспалительной реакции. Они принимают участие в регуляции процесса свертывания крови,регулируют метаболические процессы на уровне клеток. Следует отметить,что в различных тканях эффект воздействия простагландинов на метаболические процессы может иметь противоположную направленность. Так, простагландины повышают уровень цАМФ в тромбоцитах, щитовидной железе, передней доле гипофиза, легких и снижают содержание цАМФ в клетках почечных канальцев и жировой ткани.
Тромбоксаны образуются в тромбоцитах и после выхода в кровяное русло вызывают сужение кровеносных сосудов и агрегацию тромбоцитов. Простациклины образуются в стенках кровеносных сосудов и являются сильными ингибиторами агрегации тромбоцитов. Таким образом, тромбоксаны и простациклины выступают как антагонисты при регуляции процессов тромбообразования.
Они образуются в лейкоцитах, тромбоцитах и макрофагах в ответ на иммунологические и неиммунологические стимулы. Лейкотриены принимают участие в развитии анафилаксии, они повышают проницаемость кровеносных сосудов и вызывают при ток и активацию лейкоцитов. По-видимому, лейкотриены играют важную роль в развитии многих заболлеваний, в патогенезе которых участвуют воспалительные процессы или быстрые аллергические реакции ( например, при астме ).
1.1.2. Глицеринсодержащие липиды
Из глицеринсодержащих липидов наибольшее значение имеют ацилглицерины и глицерофосфолипиды. Обычно их рассматривают как производные трехатомного спирта глицерола:
1.1.2.1. Ацилглицерины
Ацилглицерины делятся по количеству входящих в их состав ацильных групп на моноацилглицерины:
Ацилглицерины одной группы различаются между собой составом жирнокислотных остатков - ацилов, входящих в их структуру.
Триацилглицерины составляют основную массу резервных липидов человеческого организма. Содержание прочих ацилглицеринов в клетках крайне незначительно; в основном они присутсутствуют в клетках в качестве промежуточных продуктов распада или синтеза триацилглицеринов.
Триацилглицерины выполняют резервную функцию, причем это преимущественно энергетический резерв организма. У человека массой 70 кг на долю резервных липидов приходится примерно 11 кг. Учитывая калорический коэффициент для липидов, равный 9,3 ккал/г, общий запас энергии в резервных триглицеридах составляет величину порядка 100 000 ккал. Для сравнения можно привести следующий пример: запас энергии в гликогене печени не превышает 600 - 800 ккал. Функция резервных триглицеридов как запаса пластического материала не столь очевидна, но все же продукты расщепления триацилглицеринов могут использоваться для биосинтезов, например, входящий в их состав глицерол может быть использован для синтеза глюкозы или некоторых аминокислот.
Являясь одним из основных компонентов жировой ткани, триацилглицерины участвуют в защите внутренних органов человека от механических повреждений. Кроме того, входя в большом количестве в состав подкожной жировой клетчатки, они участвуют в терморегуляции, образуя теплоизолирующую прослойку.
1.1.2.2. Глицерофосфолипиды
Все глицерофосфолипиды можно рассматривать как производные фосфатидной кислоты:
В пределах одного класса соединения отличаются друг друга составом жирнокислотных остатков. Основной функцией глицерофосфолипидов является структурная -- они входят в качестве важнейших структурных компонентов в состав клеточных мембран или липопротеидов плазмы крови. Некоторые глицерофосфолипиды выполняют специфические для конкретного класса фосфолипидов функции. Так, инозитолфосфатаиды участвуют в работе регуляторных механизмов клетки: при воздействии на клетку ряда гормонов происходит расщепление инозитолфосфатидов, а образующиеся соединения: инозитолтрифосфат и диглицериды, выступают в качестве внутриклеточных мессенджеров, обеспечивающих метаболический ответ клетки на внешний регуляторный сигнал.
1.1.3. Липиды, не содержащие в своем составе глицерола
К липидам, в состав которых отсутствует глицерол, относсится множество соединений различной химической природы. Мы остановимся лишь на трех группах веществ: сфинголипидах, стероидах и полипреноидах.
1.1.3.1. Сфинголипиды
Все сфинголипиды можно рассматривать как производные церамида, которыйяН,в свою очередяНь, состоит из двухосновного ненасыщенного аминоспирта сфингозина: и остатка высшей жирной кислоты, связанного с сфингозином амидной связью:
Отдельные классы сфинголипидов отличаются друг от друга характером группировки, присоединенной к церамиду через концевую гидроксильную группу.
а) У сфингомиелинов этой группировкой является остаок фосфорилированного холина
б) У цереброзидов такой группировкой является остаток моносахарида галактозы или глюкозы
в) У ганглиозидов эта группировка представляет собой гетероолигасахарид
Характерной особенностью структуры ганглиозидов является наличие в составе их гетероолигосахаридной группировки одного или нескольких остатков сиаловой кислоты.
Все сфинголипиды выполняют прежде всего структурную функцию, входя в состав клеточных мембран. Углеводные компоненты цереброзидов и в особенности ганглиозидов участвуют в образовании гликокалликса. В этом качестве они играют определенную роль в реализации межклеточных взаимодействий и взаимодействия клеток с компонентами межклеточного вещества. Кроме того, ганглиозиды играют определенную роль в реализации рецепторами клеток своих коммуникативных функций.
1.1.3.2. Стероиды
К стероидам относятся соединения, имеющие в своей структуре стерановое ядро:
Различные соединения из класса стероидов отличаются друг от друга или наличием дополнительных боковых углеродных радикалов, или наличием кратных связей, или наличием различных функциональных групп, или, наконец, различия могут иметь стереохимический характер.
К биологически важным соединениям стероидной природы относятся: а) холестерол,
б) стероидные гормоны, к которым относятся гормоны коры надпочечников ( глюкокортикоиды и минералокортикоиды) и половые гормоны ( эстрогены и гестагены ),
в) желчные кислоты
г) витамины группы Д.
Функции соединений стероидной природы достаточно разнообразны. Холестерол выполняет структурную функцию, входя в состав клеточных мембран. Наибольшим содержанием холестерола отличается наружная клеточная мемранна, причем от количества холестерола в мемьбране зависит ее микровязкость, а значит и проницаемость мембран для различных соединений. Холестерол выполняет также пластическую функцию, поскольку он служит исходным соединением для синтеза стероидных гормонов или желчных кислот. Стероидные гормоны выполняют регуляторную функцию, контролируя протекание в организме различных биологических процессов. Желчные кислоты играют важную роль в усвоениии экзогенных липидов, принимая участие в эмульгировании перевариваемых липидов в кишечнике и в всасывании продуктов расщепления липидов в стенку кишечника. Витамин Д, превращаясь в организме в 1,25-дигидроксикальциферол, принимает участие в регуляции фосфорно-кальциевого обмена.
1.1.3.3. Полипреноиды
К полипреноидам относятся соединения, синтезируемые из активированных пятиуглеродных молекул - производных изопрена.К числу таких соединений относятся, например, долихол, витамин А, коэнзим Q и ряд других соединений. Каждое из этих соединений выполняет свойственную ему функцию. Так, долихол в виде долихолфосфата принимает участие в синтезе гетероолигосахаридных компонентов гликопротеинов, коэнзим Q является промежуточным переносчиком протонов и электронов в цепи дыхательных ферментов в митохондриях, витамин А принимает участие в регуляции работы генетического аппарата клеток и в формировании зрительного восприятия.
1.1.4. Соединения смешанной природы
К этой группе относятся соединения сложной химической природы, одним из компонентов которых является липид. К таким соединениям относятся, например, липополисахариды клеточной стенки ряда микроорганизмов, липоаминокислоты . К этой группе относят обычно и липопротеиды, хотя строго говоря липопротеиды представляют собой не химические соединения, а надмолекулярные комплексы, состоящие из липидных и белковых молекул. Такие надмолекулярные липопротеидные комплексы принимают участие в транспорте липидов кровью. Даже клеточные мембраны в известном смысле слова представляют собой липопротеидные надмолекулярные структуры.
1.2. Процессы усвоения экзогенных липидов
Пищевой рацион должен содержать липиды из расчета 1,5 г на 1 кг массы тела, что составляет для 70-килограммового человека около 100г липидов в сутки. Примерно 1/4 всех липидов пищевого рациона должны составлять липиды растительного происхождения, т.е. растительные масла. По сравнению с липидами животного происхождения они содержат больше ненасыщенных жирных кислот, кроме того, они содержат больше витамина Е. Липиды нельзя исключить из пищевого рациона, поскольку вместе с ними поступают, во-первых, эссенциальные полиненасыщенные высшие жирные кислоты и, во-вторых, жирорастворимые витамины.
1.2.1. Расщепление липидов в желудочно-кишечном тракте.
Липиды, поступающие с пищей, крайне гетерогенны по своему происхождению. В желудочно кишечном тракте они в значительной мере расщепляются до составляющих их мономеров: высших жирных кислот, глицерола, аминоспиртов и др. Эти продукты расщепления всасываются в кишечную стенку и из них в клетках кишечного эпители синтезируются липиды, свойственные человеку. Эти видоспецифические липиды далее поступают в лимфатическую и кровеносную системы и разносятся к различным тканеям и органам. Липиды, поступающие из кишечника во внутреннюю среду организма обычно называют экзогенными липидами.
Процесс расщепления пищевых жиров идет в основном в тонком кишечнике. В пилорическом отделе желудка, правда, выделяется липаза, но рН желудочного сока на высоте пищеварения составляет 1,0 - 2,5 и при этих значениях рН фермент малоактивен. Принято считать, что образующиеся в пилорическом отделе желудка жирные кислоты и моноглицериды далее участвуют в эмульгировании жиров в двенадцатиперстной кишке. В желудке под действием протеиназ желудочного сока происходит частичное расщепление белковых компонентов липопротеидов, что в дальнейшем облегчает расщепление их липидных составляющих в тонком кишечнике.