Первичная структура белка

Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 20:25, лекция

Краткое описание

Первичная структура белка – это линейная последовательность аминокислотных остатков в пептидной цепи. В образовании этой структуры участвуют пептидные связи, частично дисульфидные. Первичная структура закодирована в генах, она определяет остальные уровни организации белка.

Вложенные файлы: 1 файл

Первичная структура белка.docx

— 523.08 Кб (Скачать файл)

Первичная структура белка – это линейная последовательность аминокислотных остатков в пептидной цепи. В образовании этой структуры участвуют пептидные связи, частично дисульфидные. Первичная структура закодирована в генах, она определяет остальные уровни организации белка.

Белки состоят из аминокислот. В состав белков может входить 20 различных аминокислот.

  • Аминокислоты содержат аминогруппу (—NH2) и карбоксильную группу (—СООН). Аминокислоты образуют полимеры, соединяясь друг с другом через характерные связи, называемые пептидными связями. Пептидная связь образуется при участии аминогруппы одной аминокислоты и карбоксильной группы другой аминокислоты.

Ключевым моментом, определяющим правильное функционирование большинства белков, является их форма. Белки, имеющие одинаковый аминокислотный состав, но разную последовательность аминокислот в молекуле белка, будут иметь разную форму и выполнять разные функции. Кроме того, как мы увидим в дальнейшем, идентичные белки могут или не могут выполнять сходную функцию в зависимости от их конформации.

В состав белков может входить 20 различных аминокислот.

Белки отличаются друг от друга последовательностью аминокислот, которая образует его первичную структуру. Она, в свою очередь, зависит от последовательности нуклео-тидов в участке молекулы ДНК (гене), кодирующем данный белок.

Лиз—глу—тре—ала—ала—ала—лиз—фен—глу—арг—глн—гис—мет.

                                    Пептидная связь

Пептидная цепь имеет одно направление и два разных конца — N-конец, несущий свободную аминогруппу первой аминокислоты, и С-конец, несущий карбоксильную группу последней аминокислоты. Напомним, что в белках и пептидах аминокислотные остатки связаны в цепочку последовательно. Для того чтобы назвать конкретный пептид, достаточно перечислить (начиная с N-конца)последовательность входящих в его состав аминокислотных остатков в трехбуквенном или однобуквенном коде.

 

 

 

 

 

Вторичная структура белка – это способ укладки полипептидной цепи в спиральную конфигурацию. Эта укладка происходит  по  программе,  заложенной  в  первичной  структуре. Различают три типа вторичной структуры пептидных цепей: α-спираль, β-структура (складчатый слой), беспорядочный клубок.

  • Вторичная структура представляет собой способ укладки полипептидной цепи в упорядоченную структуру благодаря образованию водородных связей между пептидными группами одной цепи или смежными полипептидными цепями.

α-Спираль. Это разновидность вторичной структуры белка, имеющая вид регулярной спирали, образующейся благодаря межпептидным водородным связям в пределах одной полипептидной цепи. Модель строения α-спирали (рис. 2), учитывающая все свойства пептидной связи, была предложена Полингом и Кори. Основные особенности α-спирали:

  • спиральная конфигурация полипептидной цепи, имеющая винтовую симметрию;

  • образование водородных связей между пептидными группами каждого первого и четвертого аминокислотных остатков;

  • регулярность витков спирали;

  • равнозначность всех аминокислотных остатков в α-спирали независимо от строения их боковых радикалов;

  • боковые радикалы аминокислот не участвуют в образовании α-спирали.

Внешне α-спираль похожа на слегка растянутую спираль электрической плитки. Регулярность водородных связей между первой и четвертой пептидными группами определяет и регулярность витков полипептидной цепи. Высота одного витка, или шаг α-спирали, равна 0,54 нм; в него входит 3,6 аминокислотных остатка, т. е. каждый аминокислотный остаток перемещается вдоль оси (высота одного аминокислотного остатка).

β-Структура. Это разновидность вторичной структуры, которая имеет слабо изогнутую конфигурацию полипептидной цепи и формируется с помощью межпептидных водородных связей в пределах отдельных участков одной полипептидной цепи или смежных полипептидных цепей. Ее называют также слоисто-складчатой структурой. Имеются разновидности β-структур. Ограниченные слоистые участки, образуемые одной полипептидной цепью белка, называют кросс-β-формой (короткая β-структура). Водородные связи в кросс-β-форме образуются между пептидными группами петель полипептидной цепи. Другой тип — полная β-структура — характерен для всей полипептидной цепочки, которая имеет вытянутую форму и удерживается межпептидными водородными связями между смежными параллельными полипептидными цепями (рис. 3). Эта структура напоминает меха аккордеона. Причем возможны варианты β-структур: они могут быть образованы параллельными цепями (N-концы полипептидных цепей направлены в одну и ту же сторону) и антипараллельными (N-концы направлены в разные стороны). Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя.

 

 

Третичная  структура белка. Это пространственная ориентация полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Третичная структура обеспечивается за счет пептидных и дисульфидных связей, но основную роль играют нековалентные связи – водородные, межмолекулярные силы Ван-дер-Ваальса, гидрофобные взаимодействия и т.д. Третичная структура связана с биологической активностью белковой молекулы (каталитической, гормональной, антигенной и т.д.).

 

Третичной структурой белка называется способ укладки полипептидной цепи в пространстве. По форме третичной структуры белки делятся в основном на глобулярные и фибриллярные. Глобулярные белки чаще всего имеют эллипсовидную форму, а фибриллярные (нитевидные) белки — вытянутую (форма палочки, веретена).

Однако конфигурация третичной структуры белков еще не дает основания думать, что фибриллярные белки имеют только β-структуру, а глобулярные α-спиральные. Есть фибриллярные белки, имеющие спиральную, а не слоисто-складчатую вторичную структуру. Например, α-кератин и парамиозин (белок запирательной мышцы моллюсков), тропомиозины (белки скелетных мышц) относятся к фибриллярным белкам (имеют палочковидную форму), а вторичная структура у них — α-спираль; напротив, в глобулярных белках может быть большое количество β-структур.

Спирализация линейной полипептидной цепи уменьшает ее размеры примерно в 4 раза; а укладка в третичную структуру делает ее в десятки раз более компактной, чем исходная цепь.

Связи, стабилизирующие третичную структуру белка. В стабилизации третичной структуры играют роль связи между боковыми радикалами аминокислот. Эти связи можно разделить на:

  • сильные (ковалентные

  • слабые (полярные и ван-дер-ваальсовы) 

Особенности организации третичной структуры белка. Конформация третичной структуры полипептидной цепи определяется свойствами боковых радикалов входящих в нее аминокислот (которые не оказывают заметного влияния на формирование первичной и вторичной структур) и микроокружением, т. е. средой. При укладке полипептидная цепь белка стремится принять энергетически выгодную форму, характеризующуюся минимумом свободной энергии. Поэтому неполярные R-группы, "избегая" воды, образуют как бы внутреннюю часть третичной структуры белка, где расположена основная часть гидрофобных остатков полипептидной цепи. В центре белковой глобулы почти нет молекул воды. Полярные (гидрофильные) R-группы аминокислоты располагаются снаружи этого гидрофобного ядра и окружены молекулами воды. Полипептидная цепь причудливо изгибается в трехмерном пространстве. При ее изгибах нарушается вторичная спиральная конформация. "Ломается" цепь в слабых точках, где находятся пролин или гидроксипролин, поскольку эти аминокислоты более подвижны в цепи, образуя только одну водородную связь с другими пептидными группами. Другим местом изгиба является глицин, R-группа которого мала (водород). Поэтому R-группы других аминокислот при укладке стремятся занять свободное пространство в месте нахождения глицина. Ряд аминокислот - аланин, лейцин, глутамат, гистидин - способствуют сохранению устойчивых спиральных структур в белке, а такие, как метионин, валин, изолейцин, аспарагиновая кислота, благоприятствуют образованию β-структур. В молекуле белка с третичной конфигурацией встречаются участки в виде α-спиралей (спирализованные), β-структур (слоистые) и беспорядочного клубка. Только правильная пространственная укладка белка делает его активным; нарушение ее приводит к изменению свойств белка и потере биологической активности.

Четвертичная структура белка. Это укладка в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной и третичной структурой, и формирование единого макромолекулярного образования. Каждая отдельная полипептидная цепь (протомер) чаще всего не обладает биологической активностью. Эту способность биологическая молекула приобретает при определенном способе пространственного объединения входящих в его состав протомеров, при этом образуется мультимер.

Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. К ним относятся миоглобин — белок мышечной ткани, участвующий в связывании кислорода, ряд ферментов (лизоцим, пепсин, трипсин и т. д.). Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой — протомерами или субъединицами (рис. 4).

При четвертичном уровне организации белки сохраняют основную конфигурацию третичной структуры (глобулярную или фибриллярную). Например, гемоглобин - белок, имеющий четвертичную структуру, состоит из четырех субъединиц. Каждая из субъединиц — глобулярный белок и в целом гемоглобин тоже имеет глобулярную конфигурацию. Белки волос и шерсти - кератины, относящиеся по третичной структуре к фибриллярным белкам, имеют фибриллярную конформацию и четвертичную структуру.

Стабилизация четвертичной структуры белков. Все белки, у которых обнаружена четвертичная структура, выделены в виде индивидуальных макромолекул, не распадающихся на субъединицы. Контакты между поверхностями субъединиц возможны только за счет полярных групп аминокислотных остатков, поскольку при формировании третичной структуры каждой из полипептидных цепей боковые радикалы неполярных аминокислот (составляющих большую часть всех протеиногенных аминокислот) спрятаны внутри субъединицы. Между их полярными группами образуются многочисленные ионные (солевые), водородные, а в некоторых случаях и дисульфидные связи, которые прочно удерживают субъединицы в виде организованного комплекса. Применение веществ, разрывающих водородные связи, или веществ, восстанавливающих дисульфидные мостики, вызывает дезагрегацию протомеров и разрушение четвертичной структуры белка. В табл. 1 суммированы данные о связях, стабилизирующих разные уровни организации белковой молекулы.

Таблица 1. Характеристика связей, участвующих в структурной организации белков

Уровень организации

Типы связей (по прочности)

Разновидность связи

Первичная (линейная полипeптидная цепь)

Ковалентные (сильные)

Пептидная — между α-амино- и α-карбоксильными группами аминокислот

Вторичная (α-спираль, β-структуры)

Слабые

Водородные — между пептидными группами (каждой первой и четвертой) одной полипептидной цепи или между пептидными группами смежных полипептидных цепей

Ковалентные (сильные)

Дисульфидные — дисульфидные петли в пределах линейного участка полипептидной цепи

Третичная (глобулярная, фибриллярная)

Ковалентные (сильные)

Дисульфидные, изопептидные, сложноэфирные — между боковыми радикалами аминокислот разных участков полипептидной цепи

Слабые

Водородные — между боковыми радикалами аминокислот разных участков полипептидной цепи

Ионные (солевые) — между противоположно заряженными группами боковых радикалов аминокислот полипептидной цепи

Ван-дер-ваальсовы — между неполярными боковыми радикалами аминокислот полипептидной цепи

Четвертичная (глобулярная, фибриллярная)

Слабые

Ионные — между противоположно заряженными группами боковых радикалов аминокислот каждой из субъединиц

Водородные — между боковыми радикалами аминокислотных остатков, расположенными на поверхности контактирующих участков субъединиц

Ковалентные (сильные)

Дисульфидные — между остатками цистеина каждой из контактирующих поверхностей разных субъединиц

     

 

                                     Классификация белков

В зависимости от химического состава различают простые белки – протеины, сложные белки – протеиды. Простые белки (протеины) построены из α-аминокислот и при гидролизе распадаются только на α-аминокислоты. Сложные белки (протеиды) состоят из белка (простого) и небелкового компонента, который называется простетической группой.

К простым белкам относятся: протамины, гистоны, альбумины, глобулины, проламины, глютелины, протеноиды.

Информация о работе Первичная структура белка