Автор работы: Пользователь скрыл имя, 12 Января 2013 в 10:47, лекция
История развития биотехнологии. Роль биотехнологии в решении глобальных проблем человечества.
Лекция 1
ПОНЯТИЕ О БИОТЕХНОЛОГИИ
История развития биотехнологии
Люди применяли
Только в XIX в. великий французский ученый Луи Пастер (1822-1895) открыл микробную (ферментативную) природу брожения. С этого времени биотехнология стала на научный путь развития. Пастера считают основоположником биотехнологии, а почти столетний период с 60-х годов 19-го века до 40-х годов 20-го века часто называют пастеровской эрой. Пастер доказал, что спиртовое брожение сахара есть процесс, тесно связанный с жизнедеятельностью дрожжевых грибков, которые питаются и размножаются за счет бродящей жидкости, при этом часть сахара тратится на постройку дрожжевых клеток и образование побочных продуктов – глицерина и янтарной кислоты. Были установлены два типа бактерий – аэробные, требующие для своей жизни воздух, и анаэробные, развивающиеся без него. Позже Пастер опроверг теорию самозарождения микроорганизмов. Его работы по вопросу самозарождения имели очень большое значение для развития и применения антисептических методов в хирургии. Пастер предложил использовать нагревание для увеличения сроков хранения вина, пива и молока – этот процесс получил название “пастеризации”. На основе работ Пастера и его учеников были созданы производства этанола, бутанола, ацетона, глицерина, лимонной кислоты, многих вакцин, организованы процессы биологической очистки сточных вод. Начало следующему этапу развития биотехнологии положила работа английского микробиолога А. Флеминга (1928 г.), обнаружившего способность нитчатого гриба зеленой плесени (Penicillum notatum) вызывать гибель стафилококков. Дальнейшая работа привела к выделению в чистом виде первого антибиотика пенициллина, открывшего эру антибиотиков (1940-1960 гг.). За пенициллином последовало получение стрептомицина, тетрациклинов, эритромицина и других антибиотиков, начала развиваться микробиологическая промышленность. В 1953 г. в самостоятельную науку выделилась молекулярная биология. Это было связано с открытием Д. Уотсоном и Ф. Криком знаменитой двойной спирали дезоксирибонуклеиновой кислоты (ДНК) и постулированием матричного механизма ее синтеза. Затем (1960-1975 гг.) были созданы технологии получения аминокислот, витаминов B2 и B12, биогаза, микробиологического белка на парафинах, иммобилизованных ферментов. В 70-х годах 20-го века появился термин “биотехнология”. Начало современного этапа развития биотехнологии было положено в 1972 г. с рождением новой отрасли молекулярной биологии – генетической (генной) инженерии. Группе ученых под руководством П. Берга удалось получить in vitro рекомбинантную, т.е. созданную методами генетической инженерии, ДНК. Генетическая инженерия существенно расширила экспериментальные границы молекулярной биологии, поскольку позволила вводить в различные типы клеток чужеродную ДНК. Использование методов генетической инженерии позволило решить многие практически важные задачи. Прежде всего, это получение лекарственных средств, в частности, инсулина и интерферона путем бактериального синтеза. Большим достижением является создание диагностических препаратов для выявления СПИДа. Разработка методов получения так называемых трансгенных растений открывает новые возможности для растениеводства в создании сельскохозяйственных культур, устойчивых к экстремальным воздействиям и инфекциям. Это возможный метод решения проблемы обеспечения населения Земли продуктами питания, хотя и вызывает споры об их потенциальной опасности.
Дальнейший прогресс биотехнологии связан с достижениями микробиологии, химии, генетики, молекулярной биологии, иммунологии, химической технологии. Большую роль в развитии биотехнологии сыграла техническая микробиология. Одним из важных этапов развития биотехнологии явились использование культур животных и растительных клеток, разработка способов их промышленного культивирования. Наконец, венцом современной биотехнологии стала генетическая и белковая инженерия, которые позволили получать разнообразные биологически активные вещества, используя рекомбинантные штаммы бактерий и вирусов, а также синтез их в бесклеточной системе.
Предмет и задачи биотехнологии
Биотехнология (от греч. bios - жизнь, tecen - искусство, logos - наука) - это область знаний, которая на основе изучения биологических процессов, протекающих в живых организмах и системах, использует эти процессы, а также сами биообъекты (главным образом, бактерии, вирусы, грибы, растительные и животные клетки) для получения в промышленных условиях необходимых ценных для человека продуктов или создания процессов и материалов, ранее не встречавшихся в природе.
Биотехнология - это наиболее быстро развивающаяся наука, которая на ближайшие десятилетия будет определять уровень научно-технического прогресса всего человечества. Связано это с тем, что она решает такие важные проблемы, как: создание принципиально новых эффективных и экономичных технологий получения необходимых в жизни человека веществ и материалов, в том числе медикаментозных средств; создание новых сложных материалов; осуществление процессов, ранее неизвестных в природе; поиски оригинальных путей решения экологической безопасности на планете и новых источников энергии; повышение продуктивности сельскохозяйственных растений и животных и т.д.
Биотехнология является междисциплинарной областью знаний, базирующейся на микробиологии, биохимии, молекулярной биологии, биоорганической химии, биофизике, вирусологии, иммунологии, генетике, инженерных науках и электронике и объединяет целый ряд направлений:
Медицинская биотехнология решает следующие задачи:
а) создание профилактических, диагностических и лечебных препаратов на основе современных экономичных и эффективных технологий с использованием биообъектов (микробные, растительные и животные клетки, органы животных, растения) и продуктов их жизнедеятельности (первичные и вторичные метаболиты). Это, прежде всего, создание и производство антибиотиков, вакцин, витаминов, гормонов, иммуномодуляторов, антигенов, антител, нуклеиновых кислот, диагностических систем, иммунокомпетентных клеток, препаратов крови и др.;
б) разработка и использование в практике новых приборов, аппаратуры, а также материалов, восполняющих дефекты в работе отдельных органов и тканей человека. В качестве примера можно привести создание искусственной кожи из культуры клеток эпидермиса для восполнения дефектов при ожогах; создание искусственной почки, сердца и других органов; восстановление работы иммунной системы с помощью пересадки иммунокомпетентных клеток и т.д.;
в) разработка на основе знаний о геноме человека проблем генодиагностики, генотерапии и генопрофилактики наследственных и других заболеваний путем пересадки генов;
г) создание принципиально новых методов для проведения лабораторных и клинических анализов с помощью биосенсоров. Принцип работы биосенсоров сводится к регистрации точными и чувствительными приборами (детекторами) физических, химических и биологических эффектов взаимодействия биореагентов (например, ферментов, антител, антигенов) с клетками или молекулами-мишенями, т.е. с определяемым детектируемым веществом. Например, взаимодействие антигенов со специфическими антителами может сопровождаться экзотермической реакцией, которая улавливается точными приборами, и по силе этой реакции можно судить о количественных характеристиках ее компонентов.
Сельскохозяйственная
в области животноводства - разработка и производство диагностических, профилактических и лечебных ветеринарных препаратов; создание эффективных кормов из растительной, микробной биомассы и отходов сельского хозяйства (благодаря разработке методов получения белка одноклеточных (кормового белка) переработкой парафинов или другого доступного сырья (целлюлозы, агропромышленных и сельскохозяйственных отходов, сточных вод)); повышение продуктивности сельского хозяйства путем выведения с помощью генной инженерии новых сортов ранений и пород животных (трансгенные растения и животные).
Экологическая биотехнология разрабатывает экологически безопасные технологии очистки сточных вод, утилизации отходов агропромышленного комплекса; биологические системы деградации и обезвреживания вредных химических веществ, загрязняющих почву, водоемы, атмосферу. Например, уже получены штаммы микроорганизмов, утилизирующих нефть и нефтепродукты на водных поверхностях, фенол - в сточных водах и т. д.; разрабатывает системы экологизированной защиты растений.
Пищевая биотехнология призвана решать такие проблемы, как нехватка продуктов питания и дефицит белка. В настоящее время широко распространено выращивание дрожжей, водорослей и бактерий для получения белков, аминокислот, витаминов, ферментов. Перспективно создание принципиально новых процессов на основе ферментных систем микроорганизмов, в том числе для технологии пищевых добавок и пищевых целевых продуктов.
В дальнейшем на основе методов рекомбинантных ДНК биотехнология позволит освоить синтез растительных белков и добиться искусственного фотосинтеза и фиксации азота.
Биогеотехнология предусматривает внедрение биотехнологии в добывающую промышленность, что перспективно для извлечения из руд платины и других драгоценных и стратегически важных металлов, а также для увеличения извлечения нефти из скважин, удаления серы из угля, метана из шахт.
Генетическая инженерия (новейшее направление биотехнологии) - сводится по существу к процессу получения рекомбинантных ДНК, содержащих, помимо набора природных генов, присущего «хозяйской» ДНК, «чужой» ген или гены, взятые из другой ДНК.
В настоящее время
уже разработаны сотни
Микробиологическая технология в результате разработки промышленных способов культивирования микробов позволила получать разнообразные медицинские препараты, пищевые продукты (сахар, сиропы, дрожжи), многие химические вещества (спирт, уксусная кислота, ацетон и др.).
Инженерная энзимология - позволяет при помощи ферментов получать ряд продуктов: фруктозный сироп, L-аминокислоты, медикаменты, да и сами ферменты служат медикаментами. Ферменты, или энзимы, катализируют миллионы химических превращений в клетках животных, растений, микроорганизмов и воздействуют на соответствующие субстраты вне клетки. Ферменты используются в пищевой промышленности и во многих областях деятельности человека.
Современное состояние биотехнологии в России и в мире
Роль биотехнологии в решении глобальных проблем человечества
Биотехнология
позволяет существенно
Учитывая важность биотехнологии на современном этапе существования человечества, в ее развитие вкладываются огромные средства. Более половины этих средств идет на развитие медицинской биотехнологии, так как она решает основные проблемы жизнеобеспечения человека.
Лекция 2
Ферменты как биологические катализаторы
Многочисленные биохимические реакции в живых организмах протекают в мягких условиях при температурах, близких к 40 °С, и значениях рН, близких к нейтральным. В этих условиях скорости протекания большинства реакций ничтожно малы, поэтому для их приемлемого осуществления необходимы специальные биологические катализаторы – ферменты (fermentum – закваска) или энзимы (enzume – в дрожжах).
Ферменты обладают высокой специфичностью по отношению к субстрату, т.е. тому соединению, превращение которого он ускоряет. Контакт фермента с субстратом происходит с помощью активного центра. Обычно это небольшая часть молекулы фермента, в которой выделяют две зоны: связывающую и каталитическую.
Строение ферментов
Часть ферментов представляет собой сложные белки (протеиды), содержащие кроме белковой части (апофермента) небелковую (простетическую часть или кофермент). В качестве кофермента обычно выступают витамины или ионы металлов.
Ферменты синтезируются, как все белки, на рибосомах и локализуются в цитоплазме и в различных субструктурах, встроенных в мембраны; находятся на поверхности клетки или окружающей клетку среде.
Перед контактированием с ферментом в молекуле субстрата происходят некоторые изменения формы, которая точно «подгоняется» к форме активного центра фермента по принципу «ключа и замка».
Виды и свойства ферментов
Всего известно около 3 000
различных ферментов, их делят на
6 классов.
Основные классы ферментов
Наименование |
Катализируемые реакции |
Примеры |
Оксидоредуктазы |
Восстановительные и окислительные процессы |
Глюкозооксидаза, каталаза, алкоголь- дегидрогеназа |
Трансферазы |
Перенос различных химических групп от одного субстрата к другому |
Протеинкиназа, гликогенфосфорилаза, пируваткиназа |
Гидролазы |
Гидролитическое расщепление химических связей субстратов |
Протеазы, амилазы, целлюлазы |
Лиазы |
Отщепление химической группы с образованием двойной связи или, например, присоединение химической группы по двойной связи |
Аспартаза, фумараза |
Изомеразы |
Изменения в пределах молекулы субстрата |
Глюкозоимераза, триозофосфатизомераза |
Лигазы (синтетазы) |
Соединение молекул субстрата с использованием высокоэнергетических соединений, например, АТФ |
ДНК-лигаза, трипто-фансинтетаза |