Строение клеточной мембраны

Автор работы: Пользователь скрыл имя, 06 Мая 2012 в 21:59, реферат

Краткое описание

Основу любой молекулярной мембраны составляют молекулы липидов, образующих бислой. Первые опыты, подтверждающие это, были проведены в 1925 году. Формирование бислоя является особым свойством молекул липидов и реализуется даже вне клетки. Важнейшие свойства бислоя:
- способность к самосборке;
- текучесть;
- ассиметричность.

Содержание

I. Строение клеточной мембраны……………………………………………..2
II. Функции биомембран……………………………………………………....3
III. Перенос малых молекул через мембрану………………………………...4
IV. Перенос макромолекул через мембрану……………………………….…8
Заключение…………………………………………………………..…………8
Список используемой литературы………

Вложенные файлы: 1 файл

клеточная биология.doc

— 97.00 Кб (Скачать файл)


Содержание

 

I. Строение клеточной мембраны……………………………………………..2

II. Функции биомембран……………………………………………………....3

III. Перенос малых молекул через мембрану………………………………...4

IV. Перенос макромолекул через мембрану……………………………….…8

Заключение…………………………………………………………..…………8

Список используемой литературы…………………………………...……….9

 

I.                    Строение клеточной мембраны

 

Плазматическая мембранна окружает каждую клетку,  определяет ее размер и обеспечивает  сохранение  различий  между  содержимым клетки  и  внешней  средой.  Мембрана  служит высокоизбирательным фильтром и отвечает за активный транспорт веществ,  то есть, поступление в клетку питательных веществ и вывод наружу вредных продуктов жизнедеятельности. Наконец, мембрана ответственна за восприятие внешних сигналов,  позволяет клетке реагировать на внешние изменения. Все биологические мембраны представляют собой ансамбли липидных и белковых молекул,  удерживаемых вместе с помощью нековалентных взаимодействий.

Основу любой молекулярной мембраны составляют  молекулы липидов, образующих бислой. Первые опыты, подтверждающие это, были проведены в 1925 году.  Формирование  бислоя  является  особым свойством  молекул  липидов  и  реализуется даже вне клетки. Важнейшие свойства бислоя:

- способность к самосборке;

- текучесть;

- ассиметричность.

Хотя основные свойства биологических мембран  определяются  свойствами  липидного бислоя,  но большинство спецефических функций обеспечивается мембранными белками. Белки выступают в качестве рецепторов и ферментов. С их помощью осуществляется транспорт через мембрану многих веществ. Большинство из них пронизывают бислой в виде одиночной альфа-спирали,  но есть и такие, которые пересекают его несколько раз .  Некоторые  белки связываются  с мембраной,  не пересекая бислой,  а прикрепляясь к той или иной ее стороне.  Их называют периферическими мембранными белками. Многие из перефирерических белков связаны нековалентными взаимодействиями с трансмембранными белками, но есть и такие, которые имеют ковалентную связь с молекулами липидов.

Большинство мембранных белков, так же как и липидов, способны  свободно  перемещаться  в плоскости мембраны.  Вообще говоря, возможен переход молекул белков и липидов с одной стороны мембраны на другую,  известный как "флип-флоп" перескок, но он происходит гораздо реже, чем латеральная диффузия. Известно, что  одна молекула липида совершает "флип-флоп" раз в две недели, в то время, как та же молекула диффундирует в плоскости липидного слоя  за 1 секунду на расстояние равное длине большой бактериальной клетки.

На поверхности всех клеток имеются углеводы.  Это полисахаридные  и  олигосахаридные цепи,  ковалентно присоединенные к мембранным белкам и липидам. Углеводы всегда располагаются на той стороне мембраны,  которая не контактирует с цитозолем.  То есть, на внешних (плазматических) мембранах они присоединяются  снаружи клетки. Функция углеводов клеточной поверхности пока неизвестна,  но представляется вероятным,  что некоторые из них принимают участие в процессах межклеточного узнавания.

 

II. Функции биомембран

 

       барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

       транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

       матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

       механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

       энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

       рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

       ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

       осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

       маркировка клетки — на мембране есть антигены, действующие как маркеры  «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

 

III. Перенос малых молекул через мембрану

 

Так как внутренняя часть липидного слоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Вследствие наличия этого барьера, предотвращается утечка содержимого клеток, однако из-за этого клетка была вынуждена создать специальные механизмы для транспорта растворимых в воде веществ через мембрану.

Перенос малых водорастворимых молекул осуществляется при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. В клетках существуют также механизмы переноса через мембрану макромолекул (белков) и даже крупных частиц.

При опытах с искусственными липидными бислоями было установлено, что чем меньше молекула и чем меньше она образует водородных связей, тем быстрее она дифундирует через мембрану. Итак, чем меньше молекула и чем более она жирорастворима (гидрофобна или неполярна), тем быстрее она будет проникать через мембрану.

Малые неполярные молекулы легко растворимы и быстро диффундируют. Незаряженные полярные молекулы при небольших размерах также растворимы и диффундируют. Важно, что вода очень быстро проникает через липидный бислой несмотря на то, что она относительно нерастворима в жирах. Это происходит из-за того, что ее молекула мала и электрически нейтральна. Итак, мембраны могут пропускать воду и неполярные молекулы за счет простой диффузии.

Но клетке необходимо обеспечить транспортировку таких веществ как сахара, аминокислоты, нуклеотиды, а также многих других полярных молекул.

За перенос подобных веществ ответственны специальные мембранные транспортные белки. Каждый из них предназначен для определенного класса молекул а иногда и для определенной разновидности молекул. Первые доказательства спецефичности транспортных белков были получены, когда обнаружилось, что мутации в одном гене у бактерий приводят к потере способности транспортировать определенные сахара через плазматическую мембрану. У человека есть болезнь цистинурия, при которой отсутствует способность транспортировать некоторые аминокислоты, в частности цистин, из мочи или кишечника в кровь, в результате в почках образуются цистиновые камни.

Все изученные транспортные белки являются трансмембранными белками, полипептидная цепь которых пересекает липидный бислой несколько раз. Все они обеспечивают перенос молекул через мембрану, формируя в ней сквозные проходы. В основном, транспортные белки делятся на белки-переносчики и каналообразующие белки. Первые взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Каналообразующие белки, напротив, формируют в мембране водные поры, через которые (когда они открыты) могут проходить вещества (обычно неорганические ионы подходящего размера и заряда).

Если молекула не заряжена, то направление ее диффузии определяется разностью концентраций по обеим сторонам мембраны или градиентом концентрации. В то же время на направление движения заряженной молекулы будет влиять еще и разность потенциалов на сторонах мембраны или мембранный потенциал (обычно внутренняя сторона мембраны заряжена отрицательно относительно наружной).

Учитывая концентрационный и электрический градиенты, все каналообразующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно, то есть, в направлении электрохимического градиента. Такой вид транспорта называется пассивным (облегченная диффузия), и не требует затрат энергии.

Процесс, с помощью которого белки-переносчики связывают и транспортируют растворенные молекулы, напоминает ферментативную реакцию. В белках-переносчиках всех типов имеются участки связывания для транспортируемой молекулы. Когда белок насыщен, скорость транспортировки максимальна. Связывание может быть блокируемо как конкурентными ингибиторами, (конкурирующими за тот же участок связывания), так и не конкурентными ингибиторами, связывающимися в другом месте и влияющими на структуру переносчика. Молекулярный механизм работы белков переносчиков пока не известен. Предполагается, что они переносят молекулы, претерпевая обратимые конформационные изменения, которые позволяют их участкам связывания располагаться попеременно то на одной, то на другой стороне мембраны. Белок переносчик может состоять в двух конформационных состояниях "пинг" и "понг". Переход между ними осуществляется случайным образом и полностью обратим. Однако, вероятность связывания молекулы транспортируемого вещества с белком гораздо выше в состоянии "пинг". Поэтому молекул, перемещенных в клетку, будет гораздо больше чем тех, которые ее покинут. Происходит транспорт вещества по электрохимическому градиенту.

Некоторые транспортные белки просто переносят какое-либо растворенное вещество с одной стороны мембраны на другую. Такой перенос называется унипортом. Другие белки являются контранспортными системами. В них происходит: а) перенос одного вещества зависит от одновременного (последовательного) переноса другого вещества в том же направлении (симпорт). б) перенос одного вещества зависит от одновременного (последовательного) переноса другого вещества в противоположном направлении (антипорт).

Например, большинство животных клеток поглощает глюкозу из внеклеточной жидкости, где ее концентрация высока путем пассивного транспорта осуществляемого белком, который работает как унипорт. В то же время, клетки кишечника и почек поглощают ее из люменального пространства кишечника и из почечных канальцев, где ее концентрация очень мала, с помощью симпорта глюкозы и ионов Na.

Часто бывает необходимым обеспечить перенос через мембрану молекул против их электрохимического градиента. Такой процесс называется активным транспортом и осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Если связать белок-переносчик с источником энергии, можно получить механизм, обеспечивающий активный транспорт веществ через мембрану.

Одним из главных источников энергии в клетке является гидролиз АТФ до АДФ и фосфата. На этом явлении основан важный для жизнедеятельности клетки механизм (Na + K)-насос. Он служит прекрасным примером активного транспорта ионов. Концентрация K внутри клетки в 10-20 раз выше, чем снаружи. Для Na картина противоположная. Такую разницу конценраций обеспечивает работа (Na + K)-насоса, который активно перекачивает Na из клетки, а K в клетку. Известно, что на работу (Na + K)-насоса тратится почти треть всей энергии необходимой для жизнедеятельности клетки. Вышеуказанная разность концентраций поддерживается со следующими целями:

1) Регулировка объема клеток за счет осмотических эффектов.

2) Вторичный транспорт веществ.

(Na + K)-АТФаза активно транспортирует Na наружу а K внутрь клетки. При гидролизе одной молекулы АТФ три иона Na выкачиваются из клетки а два иона K попадают в нее.

По всей вероятности в (Na + K)-насосе есть три участка связывания Na и два участка связывания K. (Na + K)-насос можно заставить работать в противоположном направлении и синтезировать АТФ. Если увеличить концентрации ионов с соответствующих сторон от мембраны, они будут проходить через нее в соответствии со своими электрохимическими градиентами, а АТФ будет синтезироваться из ортофосфата и АДФ с помощью (Na + K)-АТФазы.

Если бы у клетки не существовало систем регуляции осмотического давления, то концентрация растворенных веществ внутри нее оказалась бы больше их внешних концентраций. Тогда концентрация воды в клетке была бы меньшей, чем ее концентрация снаружи.

Информация о работе Строение клеточной мембраны