Инженерная геология

Автор работы: Пользователь скрыл имя, 26 Января 2014 в 17:44, курсовая работа

Краткое описание

Инженерная геология — наука геологического цикла, ветвь геологии, изучающая морфологию, динамику и региональные особенности верхних горизонтов земной коры (литосферы) и их взаимодействие с инженерными сооружениями (элементами техносферы) в связи с осуществленной, текущей или планируемой хозяйственной, прежде всего инженерно-строительной, деятельностью человека.

Вложенные файлы: 1 файл

Инженерная геология.doc

— 164.00 Кб (Скачать файл)

Инженерная  геология — наука геологического цикла, ветвь геологии, изучающая морфологию, динамику и региональные особенности верхних горизонтов земной коры (литосферы) и их взаимодействие с инженерными сооружениями (элементами техносферы) в связи с осуществленной, текущей или планируемой хозяйственной, прежде всего инженерно-строительной, деятельностью человека. Инженерная геология включает в себя грунтоведение, инженерную геодинамику и региональную инженерную геологию.

 

Объект исследования инженерной геологии – верхние горизонты земной коры (часто называемые геологической средой), исследуемые в специальном инженерно-геологическом отношении (Трофимов, 1996).

 

Предмет изучения инженерной геологии – знания о морфологии, динамике и региональных особенностях верхних горизонтов земной коры (литосферы) и их взаимодействии с инженерными сооружениями (элементами техносферы) в связи с осуществленной, текущей или планируемой хозяйственной деятельностью человека

 

 

 

Форма земли

В нулевом приближении можно  считать, что Земля имеет форму шара со средним радиусом 6371,3 км. Такое представление нашей планеты хорошо подходит для задач, точность вычислений в которых не превышает 0,5 %. В действительности Земля не является идеальной сферой. Из-за суточного вращения она сплюснута с полюсов; высоты материков различны; приливные деформации также искажают форму поверхности. В геодезии и космонавтике обычно для описания фигуры Земли выбирают эллипсоид вращения или геоид. С геоидом связана система астрономических координат, с эллипсоидом вращения — система геодезических координат.

 

По определению, геоид — это  поверхность, всюду нормальная силе тяжести. Если бы Земля целиком была бы покрыта океаном, то, в отсутствии приливного воздействия и прочих возмущений, имела бы форму геоида. В действительности в различных местах поверхность Земли может значительно отличаться от геоида. Для лучшей аппроксимации поверхности вводят понятие референц-эллипсоида, который хорошо совпадает с геоидом только на каком-то участке поверхности. Референц-эллипсоиды в целом имеют геометрические параметры, отличные от геометрических параметров среднего земного эллипсоида, который описывает земную поверхность в целом.

 

На практике используется несколько  различных средних земных эллипсоидов  и связанных с ними систем земных координат.

 

 

Геосфе́ры (от греч. гео — Земля, сфера — шар) — географические концентрические оболочки (сплошные или прерывистые), из которых состоит  планета Земля[1].

 

Выделяются следующие геосферы: атмосфера, гидросфера, литосфера, земная кора, мантия и ядро Земли. Ядро Земли делится на внешнее ядро (жидкое) и центральное — субъядро (твёрдое).

 

 

 

Геосферы условно делятся на базовые или главные (литосфера, атмосфера и гидросфера и другие), а также относительно автономно развивающиеся вторичные геосферы: педосфера, антропосфера (Родоман Б. Б., 1979), социосфера (Ефремов Ю. К., 1961) и ноосфера (Вернадский В. И.). Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой. Криосфера характеризуется отрицательной или нулевой температурой, при которых вода, содержащаяся в парообразном, свободном или химически и физически связанном с другими компонентами виде, может существовать в твёрдой фазе (лёд, снег, иней и другие).

 

Статус геосферы им придаётся лишь исходя из значения в жизни человека на Земле, соизмеримого с ролью первичных геосфер.

 

Каждая из перечисленных выше геосфер  изучается отдельной наукой или  набором отдельных наук, изучающих  каждую сферу на разных системных  уровнях.

 

Первые предложения по сохранению единства знания о Земле и созданию обобщающей его науки прозвучали в виде синтетической концепции геосфер Э. Зюсса и в идее А. Геттнера. В России сторонником единой и общей географии был В. В. Докучаев.

 

По совокупности природных условий и процессов, протекающих в области соприкосновения и взаимодействия геосфер, выделяют специфические оболочки (например, географическую оболочку). Географическая оболочка было определена П. И. Броуновым в 1910 году, но затем по-разному определялась и ограничивалась А. А. Григорьевым, И. П. Герасимовым, И. М. Забелиным, С.В, Калесником, М. М. Ермолаевым, А. И. Рябчиковым и другими учёными.

 

В пределах географической оболочки сталкиваются и сложно взаимодействуют  силы разного происхождения (в частности  — солнечная энергия, энергия внутренних слоёв Земли, сила тяжести, движения воздушных, водных и литогенных потоков).

 

 

 

Земна́я кора́  — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, или сокращённо Мохо. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Земля уникальна тем, что обладает корой двух типов: континентальной и океанической.

 

Океаническая кора состоит главным  образом из базальтов.

 

Толщина океанической коры практически  не меняется со временем, поскольку  в основном она определяется количеством  расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов.. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.

 

В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 120-130 километров. Средняя толщина земной коры от 5 до 70 км

 

Континентальная кора

 

Континентальная кора имеет трёхслойное  строение. Верхний слой представлен  прерывистым покровом осадочных  пород, который развит широко, но редко  имеет большую мощность. Большая  часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей

 

 

 

5. 

Геотермическая  ступень, увеличение глубины в земной коре (в метрах), соответствующее повышению температуры горных пород на 1°С. В среднем Г. с. равна 30—40 м; в кристаллических породах в несколько раз больше (до 120—200 м), чем в осадочных. Колеблется в значительных пределах в зависимости от глубины и места (от 5 до 150 м). Для Москвы средняя величина Г. с. равна 38,4 м. Измерение прироста температуры горных пород с увеличением глубин их залегания устанавливается геотермическим градиентом

Геотермический  градиент — физическая величина, описывающая скорость нагревания Земли в зависимости от расстояния от поверхности. Математически выражается изменением температуры, приходящимся на единицу глубины.

 

 

 

6. 

 

Го́рные поро́ды — природная совокупность минералов.

 

1 Три группы горных пород 

 

1.1 Магматические горные породы

- Эффузивные (вулканические) образуются при изливании магмы на поверхность

- Интрузивные возникают при изливании магмы в толще земной коры.

 

1.2 Метаморфические горные породы

Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных  или магматических горных пород. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматического тела и связанное с этим прогревание метаморфизуемой породы; воздействие отходящих от этого тела активных химических соединений, в первую очередь различных водных растворов (контактовый метаморфизм), или погружение породы в толщу земной коры, где на неё действуют факторы регионального метаморфизма —высокие температуры и давления.

 

1.3 Осадочные горные породы

обломочные породы (брекчии, конгломераты, пески, алевриты) — грубые продукты преимущественно механического разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы —дисперсные продукты глубокого химического преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы — продукты непосредственного осаждения из растворов (например, соли), при участии организмов (например, кремнистые породы), накопления органических вещества (например, угли) или продукты жизнедеятельности организмов (например, органогенные известняки)

 

 

 

7.Минералы и горные породы как строительные материалы

 

 

8.

Сила землетрясения  - степень проявления землетрясения на земной поверхности; оценивается в баллах. В большинстве стран принята международная 12-балльная шкала, в Японии - 7-балльная

 

Сейсмическое ускорение горизонтальных ускорений на поверхности земли при землетрясении различной балльности. Применительно к 12-ти балльной сейсмической шкале укоренились следующие нормативные соотношения баллов и ускорений:

землетрясениям с интенсивностью ___ 6, __ 7,__ 8,__ 9, __10 __ баллов назначаются  максимальные (пиковые) ускорения акселерограмм,

соответственно равные значениям _ 0.05, _ 0.1, _0.2, _0.4, _0.8 _ (в долях ускорения свободного падения, g).

 

Данный ряд соотношений может  быть продолжен в обе стороны, однако это не имеет практического  смысла. Землетрясения ниже 6-ти и  выше 10-ти баллов не рассматриваются  в качестве проектных ситуаций. Первые не опасны капитальным строениям, а вторые настолько разрушительны, что обеспечивать для них сейсмостойкость объектов нецелесообразно, а то и просто невозможно.

Коэффициент сейсмичности

 Коэффициент сейсмичности - отношение  значения максимального ускорения  к ускорению силы тяжести: К=a/g.

 

 

10. Магматические горные породы — это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате её охлаждения и застывания. В зависимости от условий застывания различают интрузивные (глубинные) и эффузивные (излившиеся) горные породы

Вулканические породы (вулканиты) —  горные породы, образовавшиеся в результате излияния магмы на поверхность, и  затем застывшей.

 

Магматические горные породы (интрузивные  и эффузивные) классифицируются в зависимости от размера кристаллов, текстуры, химического состава или происхождения. Из-за медленного остывания магмы и больших давлений эти породы крупнокристаллические (долерит, гранит и др). Те породы, которые образовались в результате излияния на поверхность, называются эффузивными (излившимися) или вулканическими. Благодаря быстрому остыванию, кристаллы в них мелкие, практически не различимы невооружённым глазом (базальт, риолит и др).

 

 

 

11. Выветривание

Экзогенные процессы начинаются с  подготовки горных пород к переносу, с их разрушения. Горные породы, залегающие на поверхности или близ нее, подвергаются воздействию солнечных лучей, воды, воздуха, организмов. Из-за неравномерного нагревания порода растрескивается; особенно способствует этому замерзание воды, попавшей в трещины. Вода — хороший растворитель для многих веществ, и в верхних слоях горных пород, особенно при высокой температуре, происходят, обычно с участием атмосферного воздуха, химические реакции окисления, замещения, реже — восстановления. Корни растений способствуют расширению щелей между частицами породы и проникновению туда воды и воздуха, а вещества, выделяемые животными и растениями, участвуют в химических реакциях. Все эти процессы разрушения и изменения приповерхностных пород называются выветриванием. Выветривание можно охарактеризовать двумя способами:

 

  1. выветривание — это совокупность сложных процессов качественного и количественного преобразования горных пород и слагающих их минералов, приводящий к образованию почвы;

 

Физическое выветривание — это механическое измельчение горных пород без изменения их химического строения и состава. Оно начинается на поверхности горных пород, в местах контакта с внешней средой, и его действие проявляется в механическом разрушении коренных горных пород под воздействием солнечной энергии, атмосферы и воды.

 

Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с образованием новых минералов и соединений.

Биогенное выветривание, или биологическое  связано с активным воздействием на горные породы растительных и животных организмов. В сложных процессах  химического разложения минералов  и горных пород велика роль биосферы.

 

Органное выветривание Биогеохимическое воздействие на горные породы начинается уже с первых поселенцев на скальных поверхностях горных пород — различных микроорганизмов, лишайников и мхов. В результате такого воздействия на скальной поверхности породы после их отмирания появляются углубления, заполненные сухим органическим веществом (биомасса микробных и других тел). Все это подготавливает условия для последующего заселения скал высшими растениями и сопутствующей им фауной. Роль организмов в химическом выветривании определяется тем, что они поглощают из разрушаемой породы химические элементы в соответствии со своими биологическими потребностями (как питательные вещества). К числу таких элементов относятся Р, S, С1, К, Са, Mg, Na, Sr, В, в меньшей степени Si и Al, Fe и др.

Информация о работе Инженерная геология