История и перспективы развития устройств хранения информации

Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 13:32, курсовая работа

Краткое описание

Цель исследования – изучить историю и перспективы развития устройств хранения информации в современном мире.
Задачи: рассмотреть понятие памяти, ее виды;
рассмотреть понятие устройств хранения информации, их виды, принципы записи, хранение, считывание, основные пользовательские характеристики;
изучить историю и дальнейшие перспективы развития устройств хранения информации.

Содержание

Введение 3
1. Память компьютера. внешние запоминающие устройства 4
1.1 Память компьютера и ее виды 4
1.2. Внешняя память компьютера 5
1.2.1. Магнитные дисковые накопители 6
1.2.2. .Жесткие диски (винчестеры) 8
1.2.3. Накопитель на гибких магнитных дисках 12
1.2.4. CD-ROM 14
1.2.5. DVD 18
1.2.6. Флэш-память 19
1.2.7. Голографические устройства 19
1.2.8. MODS-диски 20
2. История и перспективы развития устройств хранения информации 22
2.1. История развития устройств хранения информации 22
2.2. Перспективы развития устройств хранения информации 27
Заключение 32
Список использованной литературы 34
Приложение 1 35

Вложенные файлы: 1 файл

Устройства хранения информации.doc

— 197.00 Кб (Скачать файл)
 

СОДЕРЖАНИЕ 

 

      Введение

 

     Все персональные компьютеры используют три  вида памяти: оперативную, постоянную и внешнюю (различные накопители). Память нужна как  для исходных данных, так и для хранения результатов. Она необходима для взаимодействия с периферией  компьютера и даже для поддержания образа, видимого на экране. Вся память компьютера делится на внутреннюю и внешнюю. В компьютерных  системах работа с памятью основывается на очень простых концепциях. В принципе, всё, что требуется от компьютерной  памяти - это сохранять один бит информации так, чтобы потом он мог быть извлечён оттуда.

     Запоминающие  устройства можно классифицировать по следующим критериям:

    - по типу запоминающих элементов

    - по функциональному назначению

    - по типу способу организации обращения

    - по характеру считывания

    - по способу хранения

    - по способу организации

     Объектом  курсовой работы является современные  устройства хранения информации.

     Цель  исследования – изучить историю и перспективы развития устройств хранения информации в современном мире.

     Задачи: рассмотреть понятие памяти, ее виды;

     рассмотреть понятие устройств хранения информации, их виды, принципы записи, хранение, считывание, основные пользовательские характеристики;

     изучить историю и дальнейшие  перспективы  развития устройств хранения информации.

    1. ПАМЯТЬ КОМПЬЮТЕРА. ВНЕШНИЕ ЗАПОМИНАЮЩИЕ    УСТРОЙСТВА

     1.1 Память компьютера  и ее виды

     Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлена в Приложении 1.  Память подразделяется на следующие виды1:

     Внутренняя  память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором. Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

     Энергозависимой называется память, которая стирается при выключении компьютера. Энергонезависимой называется память, которая не стирается при выключении компьютера.

     К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе и не меняется. В ПЗУ записываются программы, обеспечивающие базовый набор функций управления устройствами компьютера.

     К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Часть оперативной памяти отводится для хранения изображений (видеопамять). Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM.

     Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

     1.2. Внешняя память  компьютера

     Внешняя память предназначена для долговременного  хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания  не приводит к потере данных. Они  могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.

     По  типу доступа к информации устройства внешней памяти делятся на: устройства прямого (произвольного) доступа и устройства последовательного доступа. При прямом доступе время доступа к информации не зависит от ее места расположения на носителе. При последовательном доступе - зависит от местоположения информации.

     Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.

     ВЗУ служат для запоминания больших массивов информации - наборов данных, программ пользователей и операционных систем. В процессе работы вычислительной системы по мере необходимости производится оперативный обмен информационными массивами между ВЗУ и основной памятью.

     Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения — носителя.

     Основные  виды накопителей2:

     - накопители на гибких магнитных дисках (НГМД);

     - накопители на жестких магнитных дисках (НЖМД);

     - накопители на магнитной ленте (НМЛ);

     - накопители CD-ROM, CD-RW, DVD.

     Им  соответствуют основные виды носителей:

     - гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб), диски для сменных носителей;

     - жёсткие магнитные диски (Hard Disk);

     - кассеты для стримеров и других НМЛ;

     - диски CD-ROM, CD-R, CD-RW, DVD.

     Запоминающие  устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

     Основные  характеристики накопителей и носителей3:

     - информационная ёмкость;

     - скорость обмена информацией;

     - надёжность хранения информации.

     Остановимся подробнее на рассмотрении вышеперечисленных  накопителей и носителей.

     1.2.1. Магнитные дисковые  накопители

     Принцип работы магнитных запоминающих устройств основаны на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно, осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение полярности напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

     Дисковые  устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую. Дисковые устройства, как правило, используют метод записи называемый методом без возвращения к нулю с инверсией (Not Return Zero – NRZ). Запись по методу NRZ осуществляется путем изменения направления тока подмагничивания в обмотках головок чтения/записи, вызывающее обратное изменение полярности намагниченности сердечников магнитных головок и соответственно попеременное намагничивание участков носителя вдоль концентрических дорожек с течением времени и продвижением по окружности носителя. При этом, совершенно неважно, происходит ли перемена магнитного потока от положительного направления к отрицательному или обратно, важен только сам факт перемены полярности.

     Для записи информации, как правило, используют различные методы кодирования информации, но все они предполагают использование в качестве информационного источника не само направление линий магнитной индукции элементарной намагниченной точки носителя, а изменение направления индукции в процессе продвижения по носителю вдоль концентрической дорожки с течением времени. Такой принцип требует жесткой синхронизации потока бит, что и достигается методами кодирования. Методы кодирования данных не влияют на перемены направления потока, а лишь задают последовательность их распределения во времени (способ синхронизации потока данных), так, чтобы, при считывании, эта последовательность могла быть преобразована к исходным данным4.

     1.2.2. .Жесткие диски  (винчестеры)

     Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую собственно контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей насаженных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и/или контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

     Информация  заносится на концентрические дорожки, равномерно распределенные по всему носителю. В случае большего, чем один диск, числа носителей все дорожки, находящиеся одна под другой, называются цилиндром. Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию.

     Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Необходимо заметить, что камера не является абсолютно герметичной т.к. соединяется с окружающей атмосферой при помощи специального фильтра, уравнивающего давление внутри и снаружи камеры. Однако, воздух внутри камеры максимально очищен от пыли, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

     Диски вращаются постоянно, а скорость вращения носителей довольно высокая (от 4500 до 10000 об/мин), что обеспечивает высокую скорость чтения/записи. По величине диаметра носителя чаще других производятся 5.25, 3.14, 2.3 дюймовые диски. На диаметр носителей несменных жестких дисков не накладывается никакого ограничения со стороны совместимости и переносимости носителя, за исключением форм-факторов корпуса ПК, поэтому, производители выбирают его согласно собственным соображениям.

     В настоящее время, для позиционирования головок чтения/записи, наиболее часто, применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок  в целом.

     В системах с шаговым механизмом и  двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу. Для считывания магнитных меток используется дополнительная серво-головка, а для считывания оптических - специальные оптические датчики.

     В системах с линейным приводом головки  перемещаются электромагнитом, а для  определения необходимого положения  служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик. Такой способ организации серво-данных носит название выделенная запись серво-сигналов. Если серво-сигналы записываются на те же дорожки, что и данные и для них выделяется специальный серво-сектор, а чтение производится теми же головками, что и чтение данных, то такой механизм называется встроенная запись серво-сигналов. Выделенная запись обеспечивает более высокое быстродействие, а встроенная - повышает емкость устройства.

Информация о работе История и перспективы развития устройств хранения информации