Автор работы: Пользователь скрыл имя, 27 Августа 2013 в 19:45, задача
Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:
При переводе удобно пользоваться таблицей степеней двойки:
Таблица 4. Степени числа 2
n(степень) |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
1 |
2 |
4 |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
Пример . Число перевести в десятичную систему счисления.
2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:
При переводе удобно пользоваться таблицей степеней восьмерки:
Таблица 5. Степени числа 8
n (степень) |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
|
1 |
8 |
64 |
512 |
4096 |
32768 |
262144 |
Пример . Число перевести в десятичную систему счисления.
3. Для перевода
При переводе удобно пользоваться таблицей степеней числа 16:
Таблица 6. Степени числа 16
n (степень) |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
|
1 |
16 |
256 |
4096 |
65536 |
1048576 |
16777216 |
Пример . Число перевести в десятичную систему счисления.
4. Для перевода десятичного
числа в двоичную систему его
необходимо последовательно
Пример. Число перевести в двоичную систему счисления.
5. Для перевода десятичного
числа в восьмеричную систему
его необходимо
Пример. Число перевести в восьмеричную систему счисления.
6. Для перевода десятичного
числа в шестнадцатеричную
Пример. Число перевести в шестнадцатеричную систему счисления.
7. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).
Пример. Число перевести в восьмеричную систему счисления.
8. Чтобы перевести число
из двоичной системы в
Пример. Число перевести в шестнадцатеричную систему счисления.
9. Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.
Пример. Число перевести в двоичную систему счисления.
10. Для перевода
Пример. Число перевести в двоичную систему счисления.
11. При переходе из восьмеричной
системы счисления в
Пример 1. Число перевести в восьмеричную систему счисления.
Пример 2. Число перевести в шестнадцатеричную систему счисления.
Таблица 3. Соответствие чисел, записанных в различных системах счисления
Десятичная |
Двоичная |
Восьмеричная |
Шестнадцатеричная |
1 |
001 |
1 |
1 |
2 |
010 |
2 |
2 |
3 |
011 |
3 |
3 |
4 |
100 |
4 |
4 |
5 |
101 |
5 |
5 |
6 |
110 |
6 |
6 |
7 |
111 |
7 |
7 |
8 |
1000 |
10 |
8 |
9 |
1001 |
11 |
9 |
10 |
1010 |
12 |
A |
11 |
1011 |
13 |
B |
12 |
1100 |
14 |
C |
13 |
1101 |
15 |
D |
14 |
1110 |
16 |
E |
15 |
1111 |
17 |
F |
16 |
10000 |
20 |
10 |
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10
//////////////////////////////
0 - 0 = 0
1 - 0 = 1
0 - 1 = (заем из старшего разряда) 1
1 - 1 = 0
//////////////////////////////
0 * 0 = 0
1 * 0 = 0
0 * 1 = 0
1 * 1 = 1
//////////////////////////////
Деление выполняется так же как в десятичной системе счисления:
1110 | 10
|----
10 | 111
----
11
10
----
10
10
----
0