Контрольная работа по "Концепциям современного естествознания"

Автор работы: Пользователь скрыл имя, 22 Ноября 2014 в 15:38, контрольная работа

Краткое описание

Системный подход является одной из попыток вырваться за пределы однозначности научных знаний. Это новый этап в развитии методов познания мира, дополнительный к принципам механистического подхода. Он является попыткой оценить по достоинству роль целостности. В основе системности в природе лежит ее свойство быть одновременно единым и неделимым целым и в то же время обладать свойством множественности.
«Слово «система» в переводе с греческого означает «целое, составленное из частей». Под системой понимают совокупность явлений, элементов, находящихся в определенных отношениях и связях между собой и образующих определенную целостность. Различают простые и сложные системы.

Содержание

Наиболее фундаментальные концепции современного естествознания: концепция системного подхода, концепция эволюции и концепция самоорганизации. Раскройте их смысл и поясните их сущность.
Классификация элементарных частиц по спину. Спин, в чем его физический смысл и каковы его численные значения? Фермионы и бозоны. Бозоны – переносчики всех видов фундаментальных взаимодействий. Кванты полей (гравитоны, фотоны, векторные бозоны, глюоны).
Популяционно-видовой уровень организации живого. Основная элементарная структура этого уровня и его элементарное явление. Ввести понятие "популяция». Характеристика популяции. Вид и его характеристика. Системы популяций – биогеоценозы.

Вложенные файлы: 1 файл

ксе.docx

— 59.41 Кб (Скачать файл)

Филиал федерального государственного автономного образовательного учреждения высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

ПРОФЕСИОНАЛЬНО – ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ

в г. Кемерово

 

контрольная работа

по дисциплине

 «КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ».

 

 

 

                                                                                                       Проверил доцент:                                                                                                                 М. Л. Фукс

 

                                                                   Выполнила студентка

гр. КР-213 СИД :                                                            

  А. А. Манкова       

 

 

 

 

 

 

 

 

 

 

Кемерово 2014

ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО ДИСЦИПЛИНЕ

«КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ».

Вариант № 2.

  1. Наиболее фундаментальные концепции современного естествознания: концепция системного подхода, концепция эволюции и концепция самоорганизации. Раскройте их смысл и поясните их сущность.
  2. Классификация элементарных частиц по спину. Спин, в чем его физический смысл и каковы его численные значения? Фермионы и бозоны. Бозоны – переносчики всех видов фундаментальных взаимодействий. Кванты полей (гравитоны, фотоны, векторные бозоны, глюоны).
  3. Популяционно-видовой уровень организации живого. Основная элементарная структура этого уровня и его элементарное явление. Ввести понятие "популяция». Характеристика популяции. Вид и его характеристика. Системы популяций – биогеоценозы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Системный подход.

Системный подход является одной из попыток вырваться за пределы однозначности научных знаний. Это новый этап в развитии методов познания мира, дополнительный к принципам механистического подхода. Он является попыткой оценить по достоинству роль целостности. В основе системности в природе лежит ее свойство быть одновременно единым и неделимым целым и в то же время обладать свойством множественности.

«Слово «система» в переводе с греческого означает «целое, составленное из частей». Под системой понимают совокупность явлений, элементов, находящихся в определенных отношениях и связях между собой и образующих определенную целостность. Различают простые и сложные системы. 

Можно считать систему сложной, если ее поведение содержит акт решения, определяемый как выбор альтернатив с помощью какого-либо алгоритма, например случайного. Известно, что в свойствах и поведении сложных систем независимо от природы составляющих их элементов прослеживаются четкие аналогии. В конце сороковых годов Берталанфи предложил программу построения «Общей теории систем» (ОТС).

Наиболее общей закономерностью сложных систем является закон подобия части и целого: часть является миниатюрной копией целого, а потому все части одного уровня иерархии систем похожи друг на друга.

Для биосистем в формулировке Мюллера и Геккеля закон подобия части и целого известен как биогенетический закон: онтогенез (индивидуальное развитие особи) повторяет филогенез (историческое развитие вида). Ярким подтверждением данного закона является эмбриогенез: развитие эмбриона повторяет формы, через которые данный вид прошел в процессе своей эволюции. «Для человека этот закон можно, вероятно, дополнить: ноогенез (формирование мышления) каждого человека повторяет антропогенез, то есть исторический процесс формирования мыслительного аппарата всего человечества. Можно предположить, что формирование человека повторяет весь ход эволюции Вселенной.

В более общей формулировке этот закон читается как системогенетический закон: все системы в индивидуальном развитии повторяют в сокращенной и нередко в закономерно измененной и обобщенной форме эволюционный путь развития данного вида систем. Этому закону подчиняются, например, минералогические процессы, которые в короткие интервалы времени как бы повторяют общую историю геологического развития Земли. Именно системогенетический закон рождает как следствие закон последовательности прохождения фаз развития: фазы развития природной системы могут следовать лишь в эволюционно и функционально закрепленном порядке, обычно от относительно простого к сложному, как правило, без выпадения промежуточных этапов, но, возможно, с очень быстрым их прохождением или эволюционно закрепленным отсутствием. Насильно убрать какую-то из фаз развития практически невозможно.

Подобие части и целого не означает их идентичности. Наоборот, еще в античные времена была сформулирована аксиома: целое больше суммы его частей. Сейчас она читается как аксиома эмерджентности (от английского слова эмердженс - возникновение, появление нового): целое всегда имеет особые свойства, отсутствующие у частей-подсистем и не равно сумме элементов, не объединенных системообразующими связями. Зачастую, исходя из свойств отдельных компонентов системы, невозможно предсказать свойства системы как целого. Например, водород и кислород, соединяясь, дают воду, совершенно непохожую на исходные газы.

«Особенно сильна эмерджентность в высокоорганизованных биосистемах, таких как теплокровные животные. Здесь появляются такие непостижимые эмерджентные свойства, как образное отражение окружающего мира, психика, разум и т.п. Особенно заметны эмерджентные свойства при исследовании социальных систем, например, муравейник, пчелиный улей, птичья стая, толпа и т.п. Так птицы, объединенные в стаю, теряют частично свою маневренность (стая более массивна и неповоротлива, чем птицы в отдельности). Аналогично человек в толпе теряет часть своей свободы и позволяет увлечь себя «голосу толпы».

Эмерджентность невозможно разложить на составляющие, ее нужно принять как данность, как нечто изначально целостное, неделимое, присущее только всей системе в целом и никакому элементу системы в отдельности. То есть к эмерджентности неприменим принцип редукционизма.

Любая система характеризуется своей «структурой» и «поведением». Структура - это строение и внутренняя форма организации системы, выступающая как единство устойчивых взаимосвязей между ее элементами, а также законов данных взаимосвязей. Поведение определяет внешнюю сторону системы (текстуру), в соответствии с которой любая система может входить в качестве элемента в состав других систем более высокого уровня. Таким образом, одним из основных свойств систем является их иерархичность (иерархия - расположение ступенчатым рядом), в соответствии с которым любая система сама может являться элементом более общей системы, в то же время каждый элемент системы сам в свою очередь может являться системой. Иерархичность систем обеспечивает их устойчивость и неуязвимость.

Современный уровень знаний позволяет представить иерархию природных систем в виде следующей цепочки: элементарные частицы - атомы - молекулы - клетки - многоклеточные - экосистемы - биосфера - космическое тело - звездная система - галактика - Вселенная. Между уровнями приведенной иерархии биосистем не существует четких границ или разрывов, здесь обнаруживается масса промежуточных переходных форм, например, молекула - макромолекула (полимер) - сложномолекулярный комплекс (вирус) - коацерватная капля - клетка. По большому счету четкой границы нет даже между отдельным организмом и экосистемой: организм, изолированный от экосистемы, не может жить долго, так же как изолированный орган не может жить долго без тела, в котором он изначально зародился.

Принципы системного подхода противопоставлены принципам механицизма:

1) дедуктивность - постулируется возможность существования явлений, даже если мы не понимаем их механики, и уже исходя из этого выводятся законы, позволяющие существовать таким явлениям;

2) рекуррентность - постулируется возможность существования таких свойств и связей между элементами системы, механика которых нам не понятна (тем самым узаконивается эмерджентность);

3) телеологичность - признается существование феномена целесообразности в поведении сложных систем и их элементов.

 

Концепция эволюции.

Чарльз Дарвин - основоположник теории эволюции.

Чарльз Дарвин (1809-1882) во время своего кругосветного плавания на корабле «Бигль» собрал множеств во данных, свидетельствующих о том, что виды нельзя считать неизменными. После возвращения в Англию он изучал практику разведения голубей и других домашних животных, что натолкнуло его на идею естественного отбора. В 1778 году священник Т. Мальтус опубликовал «Трактат о народонаселении», в котором обрисовал, к чему привел бы рост населения, если бы он ничем не сдерживался. Дарвин перенес его рассуждения на природу и обратил внимание на то, что несмотря на высокий репродуктивный потенциал, численность популяций остается относительно постоянной. Дарвин предположил, что при интенсивной конкуренции внутри популяции любые изменения, благоприятные для выживания в данных условиях, повышают способность особей размножаться и оставлять потомство.

Теория эволюции сформулирована Дарвином в 1839 году. Наибольший вклад Дарвина в науку заключался не в том, что он доказал существование эволюции, а в том, что он объяснил, как она может происходить. Гипотеза Дарвина основана на трех наблюдениях и двух выводах:

1) Особи, входящие в состав  популяции, обладают большим репродуктивным  потенциалом.

2) Число особей в каждой  данной популяции примерно постоянно.

Многим особям не удается выжить и оставить потомство. В популяции происходит «борьба за существование». Во всех популяциях существует изменчивость. В «борьбе за существование» те особи, признаки которых наилучшим образом приспособлены к условиям жизни, обладают «репродуктивным преимуществом» и производят больше потомков, чем менее приспособленные особи. Вывод 2 содержит гипотезу о естественном отборе, который может служить механизмом эволюции».

Не столь важно, какая конкуренция имеет место -- внутри или межвидовая.

Решающий фактор, определяющий выживание, -- это приспособленность к среде. Любое, пусть самое незначительное физическое, физиологическое или поведенческое изменение, дающее одному организму преимущество перед другим, будет действовать в «борьбе за существование» как селективное преимущество. Благоприятные изменения будут передаваться следующим поколениям, а неблагоприятные -- элиминироваться отбором, так как они невыгодны организму. Действуя таким образом, естественный отбор ведет к повышению «мощности» вида, а в филогенетическом плане -- обеспечивает его выживание.

Теория эволюции знаменовала собой крупный прорыв в биологии, наряду с классификацией Линнея и клеточной теорией.

Концепция самоорганизации.

В настоящее время концепция самоорганизации получает все большее распространение не только в естествознании, но и в социально гуманитарных разделах наук.   Большинство наук изучает процессы эволюции систем и они вынуждены анализировать механизмы их самоорганизации. Мы под самоорганизацией будем подразумевать явления, процессы, при которых системы (механические, химические, биологические и т.д.)  переходят на все более сложные уровни, характеризуемые своими законами, которые не сводятся только к законам

предыдущего уровня. Такие примеры мы рассматривали в предыдущих разделах.

Концепция самоорганизации в настоящее время становится парадигмой.

Обычно под парадигмой в науке подразумевают фундаментальную теорию, которая применяется для объяснения широкого круга явлений, относящихся к

соответствующей области исследования. Примерами таких теорий могут служить

классическая механика Ньютона, эволюционное учение Дарвина или квантовая

физика. Сейчас значение  понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным

направлениям исследования. Типичным примером таких междисциплинарных парадигм являются возникшая полвека назад кибернетика и появившееся четверть века спустя синергетика. Под синергетикой в настоящее время подразумевают область научных исследований, целью которых является выявление общих закономерностей в процессах образования , устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных системах  различной   природы (физических, химических биологических , экологических, социальных).

Определим, что лежит в основе кибернетики и синергетики. Кибернетика в

основном занималась анализом динамического равновесия в самоорганизующихся

системах. Она опиралась на принцип отрицательной обратной связи , согласно

которому всякое отклонение системы корректируется управляющем устройством

после получения сигнала информации об этом. Мы с вами сталкивались с таким

примером, когда рассматривали знаки в уравнениях Максвелла, связывающих

магнитные и электрические поля. Отрицательный знак в законе Фарадея и означал, что воздействие корректируется в сторону его уменьшения.

Другой пример. Сам отец кибернетики Н.Винер  рассказывал, как возникла эта

наука. Она возникла, когда стали изобретать самонаводящиеся зенитные системы.

В этих системах встретились с такой ситуацией, когда неправильно поданный

корректирующий сигнал приводил к выходу из строя всей системы наведения. В

общем речь шла о том, что в системе, развивающейся по заданным законам, связь

Информация о работе Контрольная работа по "Концепциям современного естествознания"