Автор работы: Пользователь скрыл имя, 29 Ноября 2013 в 15:21, реферат
Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский (1863—1945), «слагалось в течение десятков, сотен, тысяч поколений". «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имелопредставление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мери и уверенностью человека в большей пригодности для практики правильных форм".
2. Введение................................................................................................................................ 3
3. Виды симметрий.................................................................................................................. 5
4. Наука кристаллография.................................................................................................... 7
5. Симметрия физических явлений..................................................................................... 9
5.1 Симметрия в механике.................................................................................................. 9
5.1.1 Однородность пространства...................................................................................................................... 10
5.1.2 Изотропия пространства............................................................................................................................. 11
5.1.3 Однородность времени................................................................................................................................ 12
6. Симметрия в живой природе.......................................................................................... 14
6.1 Биологические дроби................................................................................................... 15
7. Заключение..................................................................
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ
Институт информационных систем управления
Специальность: Документоведение и Документационное обеспечение управления
Р Е Ф Е Р А Т
на тему: Проявление симметрии в различных формах материи
Выполнен студентом: Кошелев А.И.
Студенческий билет №: 121-00
Группа: I — 1
Дата выполнения работы:
Руководитель: Горбатова Р.К.
Москва 2000г.
1. Содержание
1. Содержание....................
2. Введение......................
3. Виды
симметрий.....................
4. Наука
кристаллография...............
5. Симметрия
физических явлений............
5.1 Симметрия в
механике......................
5.1.1 Однородность
пространства..................
5.1.2 Изотропия пространства........
5.1.3 Однородность
времени.......................
6. Симметрия
в живой природе...............
6.1 Биологические
дроби.........................
7. Заключение....................
8. Литература....................
2. Введение
Симметрия является
фундаментальным свойством
Таким образом, не только
симметричные формы окружают нас
повсюду, но и сами многообразные
физические и биологические законы
гравитации, электричества и магнетизма,
ядерных взаимодействий, наследственности
пронизаны общим для всех них
принципом симметрии. «Новым в науке
явилось не выявление принципа симметрии,
а выявление его всеобщности»,—
Итак, в современном
понимании симметрия — это
общенаучная философская
3. Виды симметрий
В отличие от искусства или техники, красота в природе не создаётся, а лишь фиксируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кристаллы, многие растения.
В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Для простоты возьмём круг радиуса R с центром в точке O. Инверсия этого круга определяется как такое преобразование симметрии, которое любую точку P переводит в точку P', лежащую на продолжении радиуса, проходящего через точку P на расстоянии от центра:
OP'=R2 / OP
Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.
Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.
Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.
Порассуждаем о зеркальной симметрии. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.
В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.
Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся «нечитабельными».
Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину.
В архитектуре оси
симметрии используются как средства
выражения архитектурного замысла.
В технике оси симметрии
Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.
А что такое кристалл? Твердое тело, имеющие естественную форму многогранника. Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и ребрами для всех образов кристаллов одного и того же вещества.
Винтовая симметрия. В пространстве существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, то поворотная ось оказывается также осью переноса.
4. Наука кристаллография
К середине XVII века в изучении внешней формы кристаллов кончился период накопления экспериментальных данных. Была изучена форма многих конкретных минералов и формулирован закон постоянства углов между гранями. Этот закон имел очень важное значение для распространения на кристаллы идеи симметрии. Действительно в мире существует огромное количество кристаллов каждого вида минералов. Внешний вид их различен: у одних кристаллов грани хорошо развиты, у других некоторые грани отсутствуют вовсе, у третьих одни грани развиты, другие — нет. Как же тогда узнать одинаковы эти кристаллы по своей природе или нет? Вот тут-то и помогает закон постоянства гранных углов. Необходимо измерить углы между всеми гранями кристаллов, как между хорошо развитыми, так и между не очень развитыми, и если они окажутся одинаковыми, то эти кристаллы принадлежат одному минералу.
Углы между гранями
кристаллов минерала как бы его паспорт,
некие константы. Пользуясь ими,
можно построить идеальный
Всё это сделало
возможным приступить к первым серьёзным
обобщениям, что привело к возникновению
самостоятельной науки —
Прежде всего Ромэ-Делиль подчёркивал правильную геометрическую форму кристаллов исходя из закона постоянства углов между их гранями. Он писал: «К разряду кристаллов стали относить все тела минерального царства, для которых находили фигуру геометрического многогранника…» Правильная форма кристаллов возникает по двум причинам. Во-первых, кристаллы состоят из элементарных частичек - молекул, которые сами имеют правильную полиэдрическую форму. Во-вторых, «такие молекулы имеют замечательное свойство соединяться между собой в симметричном порядке».
Последняя фраза для нас очень важна. Ведь это фактически первое по времени применение идеи симметрии к кристаллам. Правда, оно касается не симметрии внешней формы, о которой мы сейчас говорим, а относится к расположению полиэдрических молекул в кристалле. Но от этого важность обобщения Ромэ-Делиля отнюдь не уменьшается. Наоборот, описывая расположение молекул в кристалле как симметричное. Ромэ-Делиль тем самым молчаливо полагал, что и внешняя форма кристалла - следствие такого расположения - тоже симметрична. При этом под симметрией внешней формы кристалла следовало понимать закономерное расположение его одинаковых граней, ребер и вершин в пространстве.
Изучая законы внешней формы кристаллов, Ромэ-Делиль выделил в качестве основных пять форм: тетраэдр, куб, октаэдр, ромбоэдр и гексагональную ди-пирамиду. Он ошибочно полагал, что формы всех остальных кристаллов можно получить из этих основных форм.
5. Симметрия физических явлений
«Я думаю, что было бы интересно ввести в изучение физических явлений также и рассмотрение свойств симметрии, столь знакомое кристаллографам».
Так начиналась небольшая статья Пьера Кюри «О симметрии в физических явлениях: симметрия электрического и магнитного полей», опубликованная в 1894 году во французском «Физическом журнале».
До Кюри физики часто
использовали соображения, вытекающие
из условий симметрии. Достаточно сказать,
что многие задачи механики, и особенно
статики, решались только исходя из условий
симметрии. Но обычно эти условия
достаточно простые и наглядные
и не требуют детального рассмотрения.
Впервые физики столкнулись с
нетривиальным проявлением
Впервые четкое определение симметрии физических явлений дал Кюри в своей статье. «Характеристическая симметрия некоторого явления, - писал он, - есть максимальная симметрия, совместимая с существованием явления». Всеобщий подход к симметрии физических явлений, развитый им, очень точно разъяснила Мария Кюри в биографическом очерке о своем муже: «П. Кюри безгранично расширил понятие о симметрии, рассматривая последнюю как состояние пространства, в котором происходит данное явление. Для определения этого состояния надо знать не только строение среды, но и учесть характер движения изучаемого объекта, а также действующие на него физические факторы. При характеристике симметрии среды важно помнить следующие идеи Кюри: нужно определить особую симметрию каждого явления и ввести классификацию, позволяющую ясно видеть основные группы симметрии. Масса, электрический заряд, температура имеют один и тот же тип симметрии, называемый скалярным; это есть, иначе говоря, симметрия сферы. Поток воды и постоянный электрический ток имеют симметрию стрелы типа полярного вектора. Симметрия прямого кругового цилиндра принадлежит к типу тензора».
5.1 Симметрия в механике
Пьер Кюри пришел к симметрии физических явлений от симметрии кристаллов (геометрических фигур) через симметрию материальных фигур. Это принесло важные результаты при описании физических свойств кристаллов и обещает большие успехи в других областях физики.
Но работы Пьера Кюри не оказали влияния на развитие идеи симметрии в физике. Причины этого странного парадокса, кроме указанных ранее (кристаллографичность работ Кюри, краткость, если не конспективность их изложения), состоит еще и в том, что они появились слишком поздно, тогда, когда физика уже накопила большой опыт несколько иного подхода к симметрии физических явлений, который связан с развитием механики в XVII—XIX веках.
В то время механика была фактически всей физикой. Самым главным считалось изучение движения и взаимодействия тел. Соответствующие законы, кажущиеся нам сейчас такими очевидными, потребовали колоссального труда нескольких поколений выдающихся ученых. Коперник, Кеплер, Галилей, Декарт, Гюйгенс шаг за шагом двигались к пониманию истинных законов, управляющих движением материальных тел.
Информация о работе Проявление симметрии в различных формах материи