Автор работы: Пользователь скрыл имя, 17 Июня 2014 в 17:53, контрольная работа
1.Отношения между простыми суждениями по «логическому квадрату»: отношения противоречия, подчинения, противоположности и подпротивоположности.
2.Распределенность терминов в простых суждениях.
.
Содержание
1.Отношения между простыми суждениями по «логическому квадрату»: отношения противоречия, подчинения, противоположности и подпротивоположности
2.Распределенность терминов в простых суждениях
Список литературы
1. Отношения между простыми
суждениями по «логическому
Суждения, как и понятия, бывают сравнимыми и несравнимыми (справедливо и для сложных суждений). Сравнимые - это те, которые имеют общий субъект (или предикат). Сравнимые суждения делятся на совместимые и несовместимые.
Несовместимыми являются те суждения, которые не могут быть одновременно истинными, т. е. из истинности одного суждения с необходимостью следует ложность другого. Совместимы те суждения, которые содержат одну и ту же мысль. Например (первый случай): Валентина Терешкова - первая женщина-космонавт и Валентина Терешкова - первая женщина, полетевшая в космо» или (второй случай): Борис Пастернак - лауреат Нобелевской премии и автор романа “Доктор Живаго” - лауреат Нобелевской премии. В первом случае субъект и предикат совпадают, во втором случае субъекты различны по форме выражения, но тождественны по содержанию, предикаты же совпадают. В отношении между совместимыми суждениями невозможно, чтобы одно было истинным, а другое - ложным.
Отношения между суждениями по истинности наглядно выражаются с помощью логического квадрата. Он показывает, что между суждениями разных типов имеются отношения противоречия, противоположности, подпротивоположности и подчинения:
I. Начнем с отношения подчинения.
В отношении подчинения
II. Отношение противоположности существует между суждениями типа A и E. Они не могут быть одновременно истинными, но могут быть одновременно ложными. Если одно суждение истинно, то второе обязательно ложно; если одно суждение ложно, то второе может быть как истинным, так и ложным. Например, суждение Все люди смертны - истинно, а суждение Ни один человек не смертен - ложно или: Все птицы летают - ложное суждение, и суждение Ни одна птица не летае - тоже ложно.
III. Отношение
IV. Отношение противоречия. В таком
отношении находятся суждения
типа A и O, E и I. Смысл его в том,
что данные суждения не могут
быть ни одновременно
2. Распределенность терминов в простых суждениях
Основные структурные элементы простого суждения - субъект и предикат - называются терминами суждения. В любом суждении каждый термин является распределенным или нераспределенным.
Термин считается распределенным (т.е. развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина, и обозначается знаком «+», а на круговых схемах Эйлера изображается полным кругом (т.е. кругом, который не содержит в себе другого круга и не пересекается с другим кругом):
Термин считается нераспределенным (т.е. неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина, и обозначается знаком «-», а на круговых схемах Эйлера изображается неполным кругом (т.е. кругом, который содержит в себе другой круг или пересекается с другим кругом):
Например, в суждении «Все акулы (S) являются хищниками (Р)» речь идет обо всех акулах, значит субъект этого суждения распределен. Однако, в данном суждении речь идет не обо всех хищниках, а только о части хищников (именно - о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределен. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения круговыми схемами Эйлера, увидим, что распределенному термину (субъекту «акулы») соответствует полный круг, а нераспределенному (предикату «хищники») - неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть):
Наиболее простой способ установления распределенности терминов в простых суждениях предполагает использование круговых схем Эйлера. Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами. Далее еще проще - полный круг, как уже говорилось, соответствует распределенному термину, а неполный - нераспределенному. Например, требуется установить распределенность терминов в суждении «Некоторые русские писатели - это всемирно известные люди». Сначала найдем в этом суждении субъект и предикат: «русские писатели» - субъект, «всемирно известные люди» - предикат. Теперь установим, в каком они отношении. Русский писатель может как быть, так и не быть всемирно известным человеком, и всемирно известный человек может как быть, так и не быть русским писателем, следовательно субъект и предикат указанного суждения находятся в отношении пересечения. Изобразим это отношение на схеме, заштриховав ту часть, о которой идет речь в суждении:
Как видим, и субъект и предикат изображаются неполными кругами (у каждого из них как бы отрезана какая-то часть), следовательно, оба термина предложенного суждения не распределены (S-, P-).
Список использованных источников
Информация о работе Контрольная работа по дисциплине "Логика"