Генетикалық инженерия негіздері

Автор работы: Пользователь скрыл имя, 12 Октября 2015 в 02:54, реферат

Краткое описание

Ген инженериясы молекулалық биологияның жаңа саласы. Ол лабораториялық әдіс арқылы генетикалық жүйелер мен тұқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияның және молекулалалық биологияның жетістіктерімен байланысты. Бұл атаудың екі түрі қол-данылады: «генетикалық инженерия» және «ген инженериясы».

Содержание

І Кіріспе
ІІ Негізгі бөлім
Генетикалық инженерияның даму тарихы
Генетикалық инженерияның өту механизмдері
Саланың жеткен жетістіктері
ГМО дегеніміз не?!

ІІІ Қорытынды
IV Пайдаланылған әдебиеттер

Вложенные файлы: 1 файл

казеке.docx

— 1.35 Мб (Скачать файл)

Қ.А.ЯСАУИ АТЫНДАҒЫ ХАЛЫҚАРАЛЫҚ ҚАЗАҚ-ТҮРІК       УНИВЕРСИТЕТІ

МОЛЕКУЛАЛЫҚ БИОЛОГИЯ ЖӘНЕ МЕДИЦИНАЛЫҚ ГЕНЕТИКА

 КАФЕДРАСЫ

 

 

 

 

 

СӨЖ

 

Тақырыбы: Генетикалық инженерия негіздері

 

 

 

 

 

 

                                                      Орындаған: Әбділдаев Қ.

                                                      Қабылдаған: Еримова А.

 

 

 

Түркістан – 2015ж.

                         

                                            Жоспар

 

І Кіріспе

ІІ Негізгі бөлім

    1. Генетикалық инженерияның даму тарихы

    1. Генетикалық инженерияның өту механизмдері

    1. Саланың жеткен жетістіктері

    1. ГМО дегеніміз  не?!

 

ІІІ Қорытынды

IV Пайдаланылған әдебиеттер

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           

 

                                            Кіріспе

     

  Ген инженериясы молекулалық биологияның жаңа саласы. Ол лабораториялық әдіс арқылы генетикалық жүйелер мен тұқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияның және молекулалалық биологияның жетістіктерімен байланысты. Бұл атаудың екі түрі қол-данылады: «генетикалық инженерия» және «ген инженериясы». Соңғы кезде «генетикалық инженерия» жалпылама түрде колданылып жүр, ген инженериясы да осының ішіне кіреді. Гендік инженерия нәтижесінде ауылшаруашылық, медицина, биотехнология және т.б. секілді ғылым салалары көптеген жетістіктерге жетіп, өзіндік даму тарихында адамзат тарихындағы төңкеріс боларлықтай жаңалықтар ашылды. Гендік инженерия өз кезегінде молекулалық биологиямен және медициналық генетикамен өте тығыз байланысты. Себебі бұл саланың өзі тірі молекулалық деңгейде тікелей ДНҚ-ға байланысты жұмыс жасайды.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    -3-

                   Гендік инженерия ғылымының даму тарихы

Молекулалық биология ғылыми жетістіктерінің нәтижесінде пайда болған ген инженериясы организмнің бағалы қасиетін сақтап қана қоймай оған жаңа әрі саналы қасиет те бере алады. «Инженерия» деген атау құрастыру деген мағынаны білдіреді. Яғни ген инженериясы дегенді ген кұрастыру деп түсіну қажет. Ген инженериясының дәуірі басталмай тұрып 1969 жылы Г. Корана нуклеотидтерді белгілі бір жүйемен орналасқан ДНҚ синтезінің методологиясын жасап берген. Жекеленген дербес амин қышқылы — ашытқының аланиндік тРНҚ-ның бастауыш жүйесі ашылғаннан кейін Г. Корана химиялық жолмен осы РНҚ-ның көлемі 77 полинуклеотидтен тұратын кодтық бөлігін синтездеді. Кейіннен 1979 жылы осы лабораторияда ішек таяқшасының тирозиндік тРНҚ-сы синтезделді және ол Т4 бактериофагының құрамына енгізіліп, бактерияның клеткасында жұмыс істеді.

Ген инженериясының дүниеге келген уақыты 1972 жыл деп есептеледі. Сол жылы Т. Берг алғаш рет пробиркада үш түрлі микроорганизмнің ДНҚ-ларының фрагменттерінен жаңа гибридтік ДНҚ құрастырды. Бірақ маймылдың рак вирусының, бактериофагтың және ішек бактериясының гендік ДНҚ-ларынан құрастырылған ол гибридтік ДНҚ-ның клетка ішінде ойдағыдай жұмыс істей алатындығы тексерілмеді, себебі құрамында рак вирусының нуклеин қышқылы болғандықтан ғалымдар тәуекелге бармады.

Клеткада жұмыс істей алатын гибридтік ДНҚ-ны 1973-74 жылдары С. Коэн мен Г. Бойер құрастырды. Олар басқа организмнен бөліп алған ДНҚ фрагментін (генін) бактерия плазмидасының құрамына енгізді. Ол плазмидадағы бөтен гендердің алғаш рет жаңа организм ішінде жұмыс істей алатынын көрсетті. Соның артынша-ақ дүние жүзінің көптеген

-4-

лабораторияларында жұмыс істей алатын әр түрлі плазмидалар алынды. Совет елінде ондай бөтен гені бар плазмида академик А.А. Баевтың басшылығымен жасалды. Жануарлар клеткаларымен жүргізілген тәжірибелерде бір клетканың ядросын екіншісімен алмастыруға, екі немесе бірнеше эмбриондарды қосып біріктіруге, оларды бірнеше бөлікке бөлшектеуге болатыны анықталды. Мыс., генотиптері әр түрлі тіндердің клеткаларын біріктіру арқылы тышқанның аллофенді особьтары (фенотипі әр түрлі дарабастар) алынды. Гендік инженерия-ның теориялық негізіне генетикалық кодтың әмбебаптылығы жатады. Бір ғана кодтың (триплеттің) әр түрлі ағзадағы белок молекулаларының құрамына енетін амин қышқылдарын бақылай алатындығына байланысты, ДНҚ молекуласының кез келген бөлігін басқа бөтенклеткаға апарып салу, яғни молек. деңгейде будандастырылу теориялық тұрғыдан алғанда мүмкін екені анықталды. Жануарлар, өсімдіктер және микроорганизмдергендерінің қызметін қолдан басқаруға болатындығы дәлелденді. Ауыл шаруашылығында өсімдіктің атмосфералық азотты өзіне жинақтап алуы — үлкен мәселе. Осыған байланысты 1970 жылдары азотты фиксациялауға қабілеті жоқ пішен таяқшасына азотты жинақтай алатын, басқа бір бактерияның гені салынып, азотты жинақтау қасиетіне ие болды. Мед. саласында жаңа гендерді енгізу арқылы тұқым қуалайтын ауруларды емдеуге болады. Қазіргі кезде ауру адамдардан зат алмасудың 1000-нан аса әр түрлі тұқым қуалайтын өзгерістері табылған.

 

                                                        -5-

 

 Микроорганизмдер генетикасы  мен молекулалық биологияның  екпінді дамуы біздің ғасырымыздың   70-жылдарының бірінші жартысында   генетикалық инженерия, ген инженериясы немесе рекомбинатты ДНҚ техникасы деп аталатын жаңа эксперименттік технологияның пайдаболуына әкелді. ТМД елдерінде алғашқы — екі, ал батыста соңғы аталу кең қолдану алды.

Генетикалық   инженерия деп   in vitro   жағдайында функциялық пәрменді генетикалық құрылымдарды  (рекомбинантты ДНҚ-ны) құрастыруды және оларды   тіріклеткаларға енгізуді түсінеді. «Генетикалық инженерия» және «ген инженериясы» терминдері синоним ретіңде қаралғанмен, олардың мағынасы бірдей емес: генетикалық инженерия — генетикамен байланысқан, ал ген инженериясы — тек генге ғана қатысы бар. Рекомбинантты ДНҚ (рДНҚ) дегеніміз әр текті  ДНҚ-лардан құралған   (табиғи немесе синтетикалық ДНҚ фрагменттерін жалғастыру  арқылы) және клеткаларда репликациялана алатын генетикалық құрылымды түсінеді. Бүл арадан, біз үш терминнің де жалпы анықтамасы бір бағытта екендігін байқауымыз керек,  реалдық тұрғыдан олардың  мақсаттары.бірдей және қазіргі жаңа биотехнологияның негізгі, әрі перспективалы әдісі болып саналады.

Ген инженериясы мынадай кезеңдерден тұрады: 1) генді (ДНҚ фрагментін) алу; 2) рекомбинантты ДНҚ . молекуласын құрастыру; 3) реципиент клеткасына рекомбинантты ДНҚ молекуласын енгізу; 4) қажет рекомбинантты ДҢҚ молекулалары бар клондарды (бактерияық клеткаларды) ортадан табу. 

Ген инженериясында генді мынадай әдістермен алуға болады:

 

                                                        -6-

 

клеткадағы ДНҚ-дан тікелей кесіп алу; химиялық жолмен синтездеу; аРНҚ-дан кері транскриптаза арқылы синтездеу. Бірінші әдіс ген инженериясының дамуының алғашқы кезеңінде қолданыла бастады. Белгілі организмнің ДНҚ-сын тугелімен  әр түрлі рестриктазалармен үзіп, әр түрлі фрагменттер алады. Содан кейін оны клетка ішінде «аркалап» кіргізе алатын сақиналы (дөңгелек) плазмидалармен жалғайды, Ол үшін плазмиданы да рестриктазалармен  үзеді, оған әлгі ДНҚ фрагменттерін қосып жалғап, қайтадан бүтін плазмидалар алады. Бұл плазмидалардың әрқайсысының құрамында бір немесе бірнеше бөтен ДНҚ фрагменті (гені) болады, Одан кейін ол плазмидаларды қайтадан бактерияға еңгізеді. Осының нәтижесінде бактерия клеткасының әрқайсысында басқа организм генінің, бір түрі болады, Осындай әртүрлі бөтен гендері бар бактерия клеткаларының жиынтығын немесе коллекциясын «гендер банкі» кейде «гендер кітапханасы» деп атайды. Зерттеушілер ол банкіден уақытында қажет белоктың генін жаңадан тауып алады. Осындай гендер банкі қазір Ресейде, Батыс Европада және АҚШ-та жасалған. Химиялық жолмен жасанды генді 1969 жылы Г. Корана синтездеген. Бірақ оған жалғасқан промотор тізбегі мен транскрипцияны аяқтайтын кодондар болмағандықтан, ол клетка ішінде ешбір қызмет көрсете алмады. Гендерді химиялық синтездуге нуклеин қышқылдарындағы нуклеотидтердің орналасу тәртібін анықтау әдісін тапқаннан кейін  ғана  мүмкіндік  туды. Бұл  әдістерді  тапқан  Д. Джильберт пен  Ф. Сэнгер. Ғалымдар  генді  белоктың құрамындағы амин қышқылдарына  қарап  отырып  синтездеуді де үйренді, (3 нуклеотид — 1 кодон — 1 амин қышқылы деген заңдылық бойынша). Соның ішінде қолдан синтезделген ең ұзын ген, адамның самототропин (өсу) гені, ол 584 нуклеотидтен тұрады. Оны бактериядағы басқа геннің промоторына жалғастырып, плазмида арқылы бактерия клеткасына еңгізді. Соның нәтижесінде бактерияның бір клеткасы 3 млн-ға дейін адам самототропин молекуласын жасай алатын болды. Адам инсулині де химиялық жолмен синтезделіп,  осы айтылған жолмен бактерияға еңгізілді. Инсулин генін 40 аса алты мүшелік олигонуклеотидтерден тұратын түрінде бөліп алып, кейін ДНҚ-лигазаның кемегімен біріктірген. Алынған үзындығы 271 және 286 нб қос тізбекті полинуклеотидтер плазмидаға еңгізілді. Оған қоса бұдан молекулалардың экспрессиясын камтамасыз ететін, ДНҚ-ның реттеуші учаскелері де енгізілді. Клонданған (өркендетілген) гендер проинсулиннің синтезін кодтады, ал оны қарапайым химиялық өңдеу арқылы қос А және В полипептидтік тізбектен тұратын, ұзындығы 21 және 30 амин қышқылдарының қалдықтарынан тұратын, өзара дисульфидтік байланыстары бар белсенді гормонға айналдыруға болады. Жасанды әдіспен генді ферменттік синтезге сүйене отырып, кері транскрипция механизмнің көмегімен алуға да болады. Бұл механизм РНҚ-ға тәуелді ДНҚ-полимеразаның немесе кері транскриптазаның (ревертазалар) белсенділігіне байланысты. Бұл фермент ең алғаш он-когендік (залалды ісік) вирустарды

                                                            -7-

 зерттегенде  табылған. Фермент әртүрлі РНҚ-ларда, синтетикалық полинуклеотидтерді қоса, ДНҚ-ның көшірмесін құра алатын қабілеті бар. Ревертазаның көмегімен, сәйкес иРНҚ-ның қатысуымен, іс жүзінде кез келген бөліп алуы жақсы игерілген генді алуға болады. Бұл әдісті белгілі бір тканьдарда өте қарқынды транскрипцияланатын гендерге қолдану тиімді. Осындай әдістермен адамның, сүтқоректілер мен құстардың кодтаушы глобиндері, өгіздің көз хрусталигінің (көз жанары) белогы, жұмыртқа белогы, жібек фибрионы (талшығы) және тағы басқа гендер алынды да өркендетілді. Ферментті синтездеп, пробиркада РНҚ молекуласынан ДНҚ генінің комплементарлы тізбегін жазып алуды транскрипция дейді. Синтездеу үшін қолданылатын жүйе құрамында ДНҚ-ға кіретін төрт нуклеотид, магний ионы, кері транскриптаза ферменті және генмен кодталған көшірмесін алатын иРНҚ бар. иРНҚ-дан кері транскрипта-за, оған сәйкес ДНҚ тізбегін синтездеп, сол ферменттің көмегімен ДНҚ-ның екінші тізбегі синтезделеді. Осының нәтижесінде иРНҚ-да синтезделген ген құрылымына ұқсас ген пайда болады. Осы әдіспен көптеген елдің лабораториясында бірнеше гендер тобы алынды. Гендік инженерияда жасанды гендер ситездеумен қатар рекомбинантты молекуласын құрастыру үшін табиғи гендер де пайдаланылады. Ол гендерді векторлық ДНҚ молекуласына байланыстыру бактериялық ферменттер рестриктазалар арқылы іске асырылады. Бактерия клеткасындағы қорғанштық қызмет атқаратын рестриктазалар клеткаға енген бөтен ДНҚ-ны жою мақсатыкда оны бірнеше бөліктерге кесіп тастауға қабілетті келеді. Кесілген ДНҚ фрагменттері шамалы уақыттан кейін комплементарлық принцкп бойынша лигаза ферментінің көмегімен қайта жалғанып, ДНҚ-ның сақина тәрізді пішіні қалпына келеді. Осы әдіспен түрлі клеткалардан немесе хромосома учаскелерінен алынған ДНҚ кесінділерін жалғастырып рекомбинантты ДНҚ молекуласын алуға мүмкіндік туды. Векторлар ретінде ДНҚ-дан басқа да фогтар, вирустар, пазмидтер, эписомдар қолданылады. Генетикалық инженерияның алдына қойған мақсаты алуан  түрлі, өйткені бұл әдісті  пайдалану  турлі деңгейде жүреді. Олар: организмдік деңгей клеткалық деңгей гендік  деңгей Организмдік деңгейде генетикалық  инженерияны қолданудың мысалы ретінде аллофендік жануарларды (тышқанды) алуға болады. Бірнеше аналық тышқанның жатырынан дамудың 8 бластомерлік кезеңіндегі ұрықтарды шығарып алып,  түтікше ішінде ол бластомерлерді бір-бірінен  ажыратады, Түрлі особътардан алынған осы бластомерлерді араластырып түзілген қоспа бластуланы дамуының  гаструлалық кезеңінде бір аналық тышқанның жатырына енгізіп дамуды жалғастырады. Дүниеге келген аллофенді тышқанның фенотипінде барлық ата-аналарна тән белгілер қайталанғанымен, бірқатар  өзіндік  жаңа қасиеттер де пайда болады. Ендеше, ересек жағдайда ұлпалары бір-біріне иммунологиялық жағынан сәйкес келмейтін особьтардың клеткаларынан осы жолмен қалыпты дамып  жетіліп, тіршілік етуге  қабілетті аллофендік ұрпақ алуға мүмкіндік туады.

                                                      -8-

 

 Клеткалық  деңгейде әр түрге жататын организмдердің сомалық клеткаларын будандастыру арқылы бірнеше генотиптен  құралған  бұдан клетка алынады. Мысалы «адам-тышқан» будандық клетканы алып, одан адам хромосомаларын біртідеп шығарып тастайды, Жойылған қайсы бір хромосомадан кейнгі байқалатын клеткалық  фенотиптік өзгерістерге қарай отырып адамның тіркесу топтарының гендік құрамын анықтайды. Гендік децгейде — тұқым  қуалаушылықты басқару жолы гендік инженерия деп аталады. Мұндағы мақсат қолдан жасанды гендер алып немесе даяр гендерді басқа организмдердің геномына енгізу арқылы олардың фенотиптерін қалаған бағытта  өзгерту. Гендік инженерияның негізгі әдістері осы ғасырдың 60-70 жылдары қолданыла бастады. Бұл әдіспен организмдердің  генотиптері мен  рекотиптерін өзгерту жұмыстары мынадай төрт кезеңнен тұрады: Қажетті генді донорлық клеткадан бөліп алу немесе жасанды түрде синтездеу; Реципиент-клеткасына енгізуге қабілетті векторлық ДНҚ-ға осы генді байланыстыру; Реципиент-клеткасының геномына генді енгізу. Гендердің экспериментальды    түрде    басқа    геномга    тасымалдануын      трансгенез деп атайды; Геннің жұмыс істеуіне сай  транскрипция және трансляция нәтижесінде реципиент-клетканың фенотиптік өзгерістерін бақылау.Қазіргі генетикада генді организмнсн тыс синтездеудің екі әдісі бар: химиялық және ферментативтік. Гендік инженерия жетістіктерінің қолданылуы Гендік инженерия жетістіктерін қазіргі кезде өкеркәсіптік көлемде жануарлар мен адамның антибиотиктерін, витаминдерін, гормондарын синтездейтін микроорганизмдердің жаңа штамдарын шығаруға  пайдалануда. Соңдай-ақ, адамның  көптеген ауруларына себепші болатын вирустың бөліп алынған гендері бактерия клеткасына енгізіліп жан-жақты зерттелуде. Олай болса, адамзатты бірқатар тұқым  қуалайтын  аурулардан  арылтуда гендік: инженерияның болашағы зор деп есептеледі.

 

 

 

 

 

 

 

                                                   -9-

   1979 жылы Ю. А. Овчинников пен М. Н. Колосовтың басшылығымен ферменттердің көмегімен химиялық жолмен адам мен жануарлардың гормонының гендері – энкефалин және брадикинин синтезделді. Химиялық – ферменттік синтездеу ұсақ гендерді алу үшін ген иженериясында кеңінен қолданылады. 1970 жылы Г. Темин, Т. Мизутани және Д. Балтимор кері трнскриптаза (ревертаза) ферментін ашты. 1972 жылы кейбір онкогенді (рак) вирустар кері транскриптаза ферментінің көмегімен РНҚ – ның үлгісінен ДНҚ синтездейтіні ашылды. Одан әрі жүргізілген зерттеулер ДНҚ көшірмесінің пайда болуы үшін онкогендік вирустардың ғана РНҚ – сы ғана емес, сондай  ақ жасанды полирибонуклеотидтердің де үлгі бола алатындығын көрсетті. Бұл кез келген жеке гендерді (ДНҚ), олардың РНҚ көшірмелерін қолдана отырып ферменттік синтездеуге болатынына мүмкіншілік туғызды. Жасанды генді рак вирустарынан бөлініп алынған транскриптаза ферменті  арқылы синтездеу қазір кеңінен қолданылып жүр.  Кері транскриптазаның РНҚ – ға қарап, оның тізбегіне сәйкес ДНҚ тізбегін жасайтынын айттық. Яғни кез келген организмнен бөлініп алынған РНҚ – дан оған сәйкес генді (ДНҚ - ны) жасауға болады. Осы әдіспен соматотропиннің иРНҚ – сы пайдаланылды (иРНҚ клеткаларында өте көп синтезделеді екен). Ю. А. Овчинниковтың басшылығымен интерферон гені кері транскриптаза арқылы жаса келіп, соңында ең көп мөлшерде интерферон жасайтын бактерия түрі алынды. Ферментті синтездеп, пробиркада РНҚ молекуласынан ДНҚ генінің комплементарлы тізбегін жазып алуды транскрипция дейді. Синтездеу үшін қолданылатын жүйе құрамында ДНҚ – ға кіретін төрт нуклеотид, магний ионы, кері транскриптаза ферменті және генмен кодталған көшірмесін алатын иРНҚ бар. иРНҚ – дан кері транскриптаза, оған сәйкес ДНҚ тізбегін синтездеп, сол ферменттің көмегімен ДНҚ – ның екінші тізбегі синтезделеді. Осының нәтижесінде иРНҚ – да синтезделген ген құрылымына ұқсас ген пайда болады. Осы әдіспен көптеген елдің лабораториясында бірнеше гендер тобы алынды.

Информация о работе Генетикалық инженерия негіздері