Молекулярная патология гемоглобина. Серповидноклеточная анемия

Автор работы: Пользователь скрыл имя, 04 Мая 2014 в 22:46, реферат

Краткое описание

Целью данного реферата является более глубокое ознакомление с гемоглобином, с генетической точки зрения. Реферат состоит из трех глав, последовательно раскрывающих структуру и типы гемоглобина. Так первая глава посвящена соответственно структуре гемоглобина и глобиновым генам. В ней освещается строение гемоглобина, а также его преобразование в ходе онтогенеза, вследствие экспрессии разных глобиновых генов. Целью второй главы является ознакомление с вариантами гемоглобина, возникающими из-за различных мутаций, а также знакомство с понятием гемоглобинопатий

Содержание

1. Введение…………………………………………………………………..
2. Гемоглобин, его структура и типы. Глобиновые гены, их экспрессия…………………………………………………………………
3. Варианты гемоглобина…………………………………………………..
3.1 Делеции…………………………………………………………………
3.2 Дупликации……………………………………………………………..
4. Наследование……………………………………………………………..
5. Механизм заболевания………………………………………………….
6. Гипотеза о малярии………………………………………………………
7. Заключение………………………………………………………………...
8. Список использованной литературы…………………………………..

Вложенные файлы: 1 файл

анемия.doc

— 104.50 Кб (Скачать файл)

«Витебский государственный ордена Дружбы народов медицинский университет»

 

 

 

 

 

Кафедра биохимии

 

 

 

 

РЕФЕРАТ

«Молекулярная патология гемоглобина. Серповидноклеточная анемия»

 

 

Студентка гр.№34                                                                                                Павловская В.И.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Витебск, 2013

 

План

  1. Введение…………………………………………………………………..
  2. Гемоглобин, его структура и типы. Глобиновые гены, их экспрессия…………………………………………………………………
  3. Варианты гемоглобина…………………………………………………..
    1. Делеции…………………………………………………………………
    2. Дупликации……………………………………………………………..
  4. Наследование……………………………………………………………..
  5. Механизм заболевания………………………………………………….
  6. Гипотеза о малярии………………………………………………………
  7. Заключение………………………………………………………………...
  8. Список использованной литературы…………………………………..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Целью данного реферата является более глубокое ознакомление с гемоглобином, с генетической точки зрения. Реферат состоит из трех глав, последовательно раскрывающих структуру и типы гемоглобина. Так первая глава посвящена соответственно структуре гемоглобина и глобиновым генам. В ней освещается строение гемоглобина, а также его преобразование в ходе онтогенеза, вследствие экспрессии разных глобиновых генов. Целью второй главы является ознакомление с вариантами гемоглобина, возникающими из-за различных мутаций, а также знакомство с понятием гемоглобинопатий. Третья глава посвящена такому заболеванию как серповидно-клеточная анемия. В ней раскрывается генетическая и биохимическая сущность этого заболевания, включая механизм его наследования и географическое распространение.

Дополнительной целью реферата является установление механизма наследования серповидно-клеточной анемии, по данным различной литературы, о чем будет говориться в третьей главе.

В приложении к реферату приводится схема, описывающая плейотропный эффект замены одной аминокислоты, приводящей к развитию серповидно-клеточной анемии (по Ярыгину В.Н.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Гемоглобин, его структура и типы. Глобиновые гены, их экспрессия.

Гемоглобин – это основной белок эритроцитов, для выделения которого из организма человека не требуется сложных биохимических методик. Поэтому молекулу гемоглобина исследовать значительно легче, чем любой другой белок человека. Все это привело к тому, что именно об этом белке мы знаем больше всего. Исследования по генетике гемоглобина, его аминокислотной последовательности и структуре молекулы продвигались очень быстро. На сегодняшний день мы знаем как гены, кодирующие полипептиды гемоглобина, так и аминокислотную последовательность этих полипептидов. Большинство концепций, разработанных для этой системы, являются общими для других белков.

Молекула гемоглобина представляет собой тетрамер, состоящий из четырех полипептидных цепей, и обозначается формулой α2β2. Эта формула показывает, что данная молекула состоит из двух α- и двух β- глобиновых цепей. Большинство разновидностей гемоглобина имеют идентичные α- цепи и отличаются лишь строением β- глобиновых цепей. К каждой полипептидной цепи глобина в специфическом месте присоединяется небелковая группа – гемогруппа, или гем. Четыре глобиновые цепи, каждая со своим гемом, образуют функциональную молекулу гемоглобина, которая переносит кислород от легких к тканям. Аминокислотная последовательность в полипептиде является его первичной структурой. Пространственное расположение соседних остатков называется вторичной структурой, а трехмерное расположение белковых субъединиц – третичной структурой. Четвертичной структурой является пространственной расположение четырех белковых субъединиц, которые образуют функциональную молекулу.

Основной разновидностью гемоглобина у детей и взрослых является гемоглобин HbA, или гемоглобин взрослых (α2β2). Его отличительная черта – строение β-цепи. Глобиновые α- и β- цепи различны по многим аминокислотным остаткам. У многих взрослых людей есть небольшое количество (2-3%) гемоглобина HbA2 (α2δ2). Его δ-цепь отличается от β-цепи всего лишь десятью аминокислотными остатками. У всех детей после рождения обнаруживается менее 1% фетального гемоглобина HbF (α2γ2). γ -цепь значительно отличается от α- и β-цепей, причем α-цепи HbA, HbA2 и HbF идентичны.

Существует несколько типов гемоглобина, характерных для эмбрионального и фетального развития. Для эмбрионов характерны три типа гемоглобина: Gower I, Gower II и Portland I, имеющие в составе ζ-, ε-, γ- и α-цепи (cм. Табл. 1). ζ-цепи напоминают по аминокислотному составу α-цепи, а ε-цепи похожи на β-цепи. ζ-цепи, вероятно, появляются раньше других в эмбриональном развитии. ζ- и α-цепи исчезают через 8 -10 недель внутриутробного развития. Затем преобладающим становится гемоглобин HbF (α2γ2), который отличается от других присутствием γ –цепи. Известно два типа γ –цепей: с аланином (Aγ) или с глицином (Gγ) в 136-м положении. Существует также и третий тип γ –цепи, являющийся вариантом Aγ-цепи, с треонином вместо изолейцина в 75-м положении. Он встречается у 10-15% эмбрионов и, судя по всему, не связан с какой либо патологией. Гемоглобин α2β2 обнаруживается уже на 6-8 неделе развития плода.

Синтез γ –цепей у эмбриона происходит в основном в печени и селезенке, но могут они синтезироваться и кроветворными клетками костного мозга. Наоборот, β-цепи в детстве и в более позднем возрасте синтезируются главным образом в костном мозге, однако синтез вне костного мозга также возможен. Различные типы гемоглобина представлены в таблице 1.

Таблица 1. (из Фогель Ф., Мотульски А. Генетика человека)

Стадия

Гемоглобин

Структура

Эмбрион

Gower I

ζ 2 ε2

Gower II

α2 ε2

Portland I

ζ 2 γ2

Плод

F

α2 Aγ2

α2 Gγ2

Взрослый человек

A

α2β2

A2

α2δ2


Все нормальные гемоглобины человека, которые были исследованы, имеют идентичную трехмерную структуру, существенную для переноса кислорода.

Аминокислотная последовательность каждой глобиновой цепи кодируется собственным уникальным геном, также как и синтез небелковой гемогруппы. У нормального человека в гаплоидном наборе хромосом обязательно присутствует хотя бы по одному гену α, β, γ, δ, ε, ζ. В большинстве популяций человека ген α-глобиновой цепи находится в дуплицированном состоянии. Отличий между этими генами не обнаружено, но экспрессируясь в одно и тоже время, ген второй α-глобиновой цепи транскрибируется более интенсивно и присутствует в организме в большем количестве, нежели ген первой α-глобиновой цепи. Существует также три варианта γ-глобиновых генов, о различиях их полипептидных цепей говорилось выше.

На сегодняшний день хорошо изучена нуклеотидная последовательность всех глобиновых генов. Гены глобинов человека образуют мультигенные семейства и расположены на двух хромосомах в составе двух кластеров (кластеры – группа генов, расположенных в определенных хромосомах, объединенных общими функциями). α-кластер глобиновых генов (семейство ζ- и α-генов) занимает 25000 пар оснований (25 т.п.н.) и находится в коротком плече 16-ой хромосомы. Семейство ε- γ- β- δ-генов (β-кластер) распологается на коротком плече 11-ой хромосомы на участке в 60 т.п.н. Гены в α-кластере расположены в следующем порядке от 5' к 3': ген эмбриональной ζ-цепи, псевдоген ζ-цепи, псевдоген α-цепи и два идентичных гена α-цепи. Расположение генов в β-кластере следующее: ген эмбриональной ε-цепи, два гена фетальных γ-цепей, псевдоген β-цепи, ген δ-цепи и ген β-цепи. Порядок расположения этих генов совпадает с порядком их экспрессии в ходе онтогенеза. Последовательности нуклеотидов мало отличаются от таковых последовательностей у своих функциональных гомологов. В результате мутаций в псевдогенах стала невозможной их транскрипция и, следовательно, экспрессия. Имеется предположение о том, что псевдогены возникли в результате дупликаций, после чего их экспрессия перестала быть необходимой для нормального функционирования организма. Ген δ-глобина, продукт которого составляет всего 2-3% всего гемоглобина, можно считать переходным состоянием к псевдогену. Все глобиновые гены имеют сходную функциональную организацию. Каждый из них имеет три кодирующие последовательности, т.е. три экзона. Между данными экзонами находятся две уникальные вставочные последовательности, или интроны (IVS-1, IVS-2). Как известно интроны транскрибируются вместе с экзонами и вырезаются в ходе процессинга для образования функциональной мРНК.

Все глобиновые цепи различных гемоглобинов имеют общее эволюционное происхождение и возникли в результате последовательных дупликаций генов. Вероятно, около 1100 млн. лет назад произошла дупликация гена-предшественника, давшая начало гемоглобиновым и миоглобиновым генам. Позднее, около 500 млн. лет назад на ранней стадии эволюции позвоночных произошла дупликация, давшая начало двум (α и β) семействам глобиновых генов, сопровождавшаяся транслокацией. Примерно 200 млн. лет назад очередная дупликация привела к возникновению в семействе β-глобиновых генов β-глобинов плодов и взрослых. Около 100 млн. лет назад произошло образование ε- и γ- глобиновых генов и, наконец, 40 млн. лет назад появились δ- и β-глобиновые гены.

Варианты гемоглобина

Различные варианты гемоглобина возникают вследствие различных мутаций в глобиновых генах. Чаще всего в результате единичных замен аминокислот в глобиновой цепи. На данный момент описано около 350 таких замен. Такие аминокислотные замены возникают в результате замены нуклеотида в триплете. Например, при замене тимидилового нуклеотида в триплете ЦТЦ, кодирующего глутаминовую кислоту, на адениловый, с образованием триплета ЦАЦ, кодирующего валин, происходит существенное изменение свойств гемоглобина, что приводит к серповидно-клеточной анемии. Если новая аминокислота будет отличаться по заряду от исходной, то это приведет к изменению электрофоретических свойств полипептида. Но, если новая мутация не приведет к изменению электрофоретических свойств, то обнаружить ее удастся только лишь при существенном изменении функциональной активности молекулы и возникновении болезни. Большинство мутаций независимо от того, меняют ли они заряд молекулы или нет, не влияют на функции гемоглобина и не приводят к патологии. Как правило, аминокислотные замены, возникающие в полипептиде в участках молекулы гемоглобина, которые обращены наружу, оказывают меньшее воздействие на молекулу, чем замены в участках контакта субъединиц или присоединения гемогруппы. Замены, нарушающие нормальную спиральную структуру цепи, вызывают нестабильность гемоглобина. Замены аминокислот в участках контакта субъединиц, влияют на сродство гемоглобина к кислороду. Большинство гемоглобиновых вариантов очень редки, но лишь немногие (HbE, HbC, HbS) встречаются чаще других.

Нарушение функций гемоглобина ведет к возникновению заболеваний, известных под названием гемоглобинопатии.

Гемоглобинопатии - это группа патологических состояний, обусловленные нарушениями структуры цепей глобина - заменой одной или нескольких аминокислот в цепи глобина, отсутствие участка цепи или ее удлинением.

Существуют четыре основных типа болезней гемоглобина:

1. Гемолитические анемии, вызванные нестабильностью гемоглобина.

2. Метгемоглобинемии, обусловленные ускоренным окислением гемоглобина.

3. Эритроцитоз, вызванный  нарушением сродства гемоглобина  к кислороду.

4. Серповидноклеточные нарушения  как следствие повреждений клеточных  мембран эритроцитов гемоглобином S.

Во всех случаях, кроме серповидноклеточных нарушений, гетерозиготы страдают различными заболеваниями, то есть мутации ведут себя как аутосомно-доминантные.

Гемолитические анемии. Они вызываются нестабильными формами гемоглобина, которых известно свыше 100. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Нестабильность может быть едва заметной, что не имеет никаких клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. Нестабильность часто обусловлена преждевременной диссоциацией гема и глобиновых цепей. Точный диагноз может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В таком случае необходимо выделение глобиновых цепей для дальнейшего анализа в специализированных лабораториях. Нестабильные гемоглобины являются причиной врожденных несфероцитарных гемолитических анемий.

Метгемоглобинемия, обусловленная гемоглобином М. Известно пять различных мутаций, приводящих к образованию гемоглобина М. Собственно метгемоглобинемия обусловлена ускоренным окислением двухвалентного железа до трехвалентного. В четырех случаях образование HbМ вызвано заменой одного из гистидинов, удерживающих группу гема в его специфическом «кармане» в глобиновой молекуле и стабилизирующих железо гема в его окисленной форме, на тирозин. Пятая мутация, вызванная заменой валина в 67-ом положении β-цепи на глутаминовую кислоту, пока не может быть достаточно четко объяснена с молекулярной точки зрения. Больные с мутацией в α–цепи, вызывающими образование HbМ, страдают цианозом от рождения. При мутации в β-цепи цианоз развивается только через 6 месяцев после рождения, когда происходи замена γ–цепи на β-цепь. У больных с HbМ часто наблюдается слабый гемолиз.

Эритроцитоз, вызванный образованием гемоглобинов с нарушенным сродством к кислороду. Существует около 30 гемоглобинов с повышенным сродством к кислороду. В 11 случаях мутации происходят в месте контакта α1β1-субъединиц в тетрамере. При адсорбции кислорода происходит движение глобиновых субъединиц в месте контакта между цепями. Повышенное сродство к кислороду может быть вызвано стабилизацией «окси»-конформации или дестабилизацией «дезокси»-конформации. Большинство других гемоглобинов с высоким сродством к кислороду содержат мутации на СООН-конце β-цепи или в сайтах связывания дифосфоглицерата. В норме эти сайты обеспечивают стабильность «дезокси»-конформации.

Информация о работе Молекулярная патология гемоглобина. Серповидноклеточная анемия