Нобелевская премия по физиологии и медицине — 2013

Автор работы: Пользователь скрыл имя, 08 Ноября 2013 в 18:30, доклад

Краткое описание

В 2013 году самая престижная научная премия вручена Рэнди Шекману, Джеймсу Ротману и Томасу Зюдхофу за раскрытие механизмов везикулярного транспорта — главной транспортной системы в наших клетках. Разнообразные молекулы, упакованные в пузырьки-везикулы, постоянно пересылаются из одного отдела клетки в другой, а также секретируются наружу. Точная доставка возможна благодаря комплексу белков, которые выступают как в качестве «адреса», так и в качестве «почтового отделения» в каждом клеточном отделе. Работы свежеиспеченных Нобелевских лауреатов позволили прояснить этот механизм в деталях: какие гены кодируют компоненты системы везикулярного транспорта, что за белки в этом участвуют и, наконец, как регулируется внутри- и межклеточный трафик.

Вложенные файлы: 1 файл

Документ Microsoft Word (2).docx

— 102.47 Кб (Скачать файл)

Нобелевская премия по физиологии и медицине — 2013

14.10.13 | Нобелевские премии, Физиология, Медицина, Дарья Спасская | Комментарии (2)Лауреаты Нобелевской  премии по физиологии и медицине - 2013

Рис. 1. Лауреаты Нобелевской премии по физиологии и медицине 2013 года (слева направо: Томас Зюдхоф, Рэнди Шекман, Джеймс Ротман). Изображение из сообщения о присуждении Нобелевской премии по физиологии и медицине 2013 года на сайте журнала Nature

В 2013 году самая престижная научная премия вручена Рэнди Шекману, Джеймсу Ротману и Томасу Зюдхофу за раскрытие механизмов везикулярного транспорта — главной транспортной системы в наших клетках. Разнообразные молекулы, упакованные в пузырьки-везикулы, постоянно пересылаются из одного отдела клетки в другой, а также секретируются наружу. Точная доставка возможна благодаря комплексу белков, которые выступают как в качестве «адреса», так и в качестве «почтового отделения» в каждом клеточном отделе. Работы свежеиспеченных Нобелевских лауреатов позволили прояснить этот механизм в деталях: какие гены кодируют компоненты системы везикулярного транспорта, что за белки в этом участвуют и, наконец, как регулируется внутри- и межклеточный трафик.

Работа, удостоенная Нобелевской  премии в этом году, не является результатом  одного гениального открытия, или  научным прорывом. Это — результат  многолетнего кропотливого труда, благодаря  которому удалось в деталях изучить  один из базовых процессов в клеточной  физиологии — внутриклеточный транспорт. Трое ученых — Рэнди Шекман, Джеймс Ротман и Томас Зюдхоф — внесли каждый свой вклад в эту работу, используя разные подходы — генетический (Шекман), биохимический (Ротман) и физиологический (Зюдхоф).

  Джеймс Ротман (James E. Rothman) родился в 1950 году в штате Массачусетс, США. Он получил докторскую степень (PhD) в 1976 году в Гарварде, затем работал в не менее знаменитом Массачусетском технологическом институте, а потом в Стэнфордском университете, где он и начал исследования в области везикулярного транспорта. В настоящее время он является профессором Йельского университета, где возглавляет кафедру клеточной биологии.

    Рэнди Шекман (Randy W. Schekman) родился в 1948 году в штате Минессота, США. Докторскую степень он получил в Стэнфорде, под руководством Артура Корнберга — Нобелевского лауреата 1959 года, открывшего механизм синтеза нуклеиновых кислот. Затем Шекман перешел в Калифорнийский университет в Беркли, где и работает до сих пор в статусе профессора кафедры молекулярной и клеточной биологии.

Томас Зюдхоф (Thomas C. Südhof) родился в 1955 году в Геттингене, Германия. В отличие от своих коллег по премии, он получил степень доктора медицины (1982), а затем степень в области нейрохимии. Однако Зюдхоф недолго пробыл немецким ученым: уже в 1983 году он перебрался в Техасский юго-западный университет в Далласе (США), где работал вместе с Майклом Брауном и Джозефом Голдстейном — лауреатами Нобелевской премии 1985 года за изучение метаболизма холестерина. В настоящее время он является профессором кафедры молекулярной и клеточной физиологии в Стэнфордском университете.

Так как эукариотическая клетка — сложно организованная структура со множеством «отделов», в процессе ее жизнедеятельности возникает необходимость передавать грузы из одного отдела (компартмента) в другой, а также посылать их за пределы клетки. Такая необходимость обусловлена разделением труда между компартментами: например, белки часто синтезируются на рибосомах, расположенных в эндоплазматическом ретикулуме, а используются в каком-нибудь другом отделе или вообще секретируются наружу. Чтобы груз был доставлен по адресу, его нужно упаковать в пузырек — везикулу (рис. 2) и снабдить специальным сигнальным белком. В качестве грузов могут выступать самые разнообразные молекулы: гормоны (в том числе инсулин), ферменты, строительные белки и др. Отдельным немаловажным примером клеточного транспорта является передача сигнала между нейронами — она осуществляется посредством выброса в синаптическую щель нейромедиаторов, упакованных в такие же везикулы.

Слева: везикула представляет из себя пузырек, окруженный билипидным слоем. Справа: электронная микрофотография синапса в месте контакта двух нейронов; хорошо видны синаптические пузырьки-везикулы, содержащие молекулы нейромедиатора

Рис. 2. Слева: везикула представляет из себя пузырек, окруженный билипидным слоем — такой же мембраной, как та, что ограничивает клетку. Справа: электронная микрофотография синапса в месте контакта двух нейронов; хорошо видны синаптические пузырьки-везикулы, содержащие молекулы нейромедиатора. Изображения с сайта en.wikipedia.org и с сайта Стэнфордского университета

Изучение везикулярного  транспорта имеет не только фундаментальное  значение: среди болезней, связанных  с нарушением процессов переноски  грузов, диабет второго типа и эпилепсия. Бактерии из рода Clostridium, которые являются возбудителями ботулизма и столбняка, при помощи своих токсинов как раз портят белки, участвующие в формировании везикул в синаптических щелях. В результате этого блокируется выброс нейромедиаторов между нейронами либо между нейроном и мышцей, что приводит к параличу.

О существовании внутриклеточного транспорта было известно еще с начала ХХ века (везикулы можно разглядеть в обычный световой микроскоп). Однако с молекулярной точки зрения детали этого процесса начали проясняться  с выходом в свет работы Шекмана в 1979 году в журнале PNAS. Работая на пекарских дрожжах, Шекман вместе со своим коллегой Питером Новиком идентифицировал гены, продукты которых обеспечивают нормальный внутриклеточный транспорт. Ученые проанализировали сотни штаммов мутантных дрожжей и выбрали среди них носителей так называемых термочувствительных мутаций (такие клетки нормально растут при комнатной температуре, но если их содержать при температуре 37°С, в них начинают накапливаться поломки). Отобранные мутанты были неспособны нормально экспортировать наружу ферменты для размещения на клеточной стенке. При повышении температуры в этих клетках начинали накапливаться везикулы, хорошо заметные в микроскоп (рис. 3).

Электронные микрофотографии  дрожжевых клеток, растущих при нормальной температуре и при температуре  активации мутаций

Рис. 3. Электронные микрофотографии  дрожжевых клеток, растущих при нормальной температуре (B) и при температуре  активации мутаций (D). Заметно значительное накопление везикул, содержащих выделяемые ферменты, внутри клетки. Рисунок из статьи: P. Novick & R. Schekman. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. USA. 1979. V. 76(4). P. 1858–1862

Шекман проанализировал генотип полученных мутантов по везикулярному транспорту и в конечном итоге идентифицировал 23 гена, которые можно было разделить на три группы, в зависимости от того, откуда и куда должны были направляться везикулы, — транспорт, ассоциированный с эндоплазматическим ретикулумом, с комплексом Гольджи или с поверхностью клетки. В своих последующих работах он обнаружил промежуточные стадии в формировании везикул и связал их с мутациями в конкретных генах (гены были обозначены аббревиатурой sec — от secretory).

Ключевые белки везикулярного  транспорта 
 
Встречным курсом двигался Джеймс Ротман (James E. Rothman), решивший в своей стэнфордской лаборатории выявить ключевые белки (а не гены, как Шекман), работающие в системе везикулярного транспорта. Используя разработанную для этого систему, он выявил ключевые белки, вовлеченные в везикулярный транспорт. На тот момент еще не было системы эффективной экспрессии генов в клетках животных, и использовался подход на основе заражения клеток вирусом везикулярного стоматита (VSV), вследствие чего клетка начинала производить большие количества вирусного белка VSV-G. При этом данный белок специальным образом гликозилируется при достижении аппарата Гольджи, что позволяет точно отслеживать момент доставки «по адресу». Ротман опубликовал несколько работ о везикулярном транспорте VSV-G в системе аппарата Гольджи [5–8] и выделил из цитоплазмы ключевые компоненты, отвечающие за этот транспорт; одним из таких белков стал N-этилмалеимид-чувствительный фактор (NSF) [9–11]. 
 
Следующим стало открытие фактора SNAP (soluble NSF-attachment protein), связывающегося с мембраной при участии NSF [12]. Знаковым событием, соединившим работы Шекмана и Ротмана, стало понимание того, что ген sec18 кодировал как раз NSF, а sec17 — SNAP [13–15] (потом было найдено соответствие и остальных генов прочим открытым Ротманом белкам). Это открытие показало, что система везикулярного транспорта является эволюционно древней для эукариот. 
 
Позже был открыт комплекс SNARE (SNAP Receptor) [16], три из компонентов которого — VAMP/синаптобревин, SNAP-25 и синтаксин — работают в составе единого пресинаптического комплекса и отвечают за процесс слияния мембран везикулы и синапса. При этом синаптобревин находится на везикуле, а две другие молекулы — на плазматической мембране. Именно наличие такого «распределенного» комплекса определяет последовательность событий, приводящих к направленному слиянию везикулы с мембраной и, следовательно, регулирует терминальный этап передачи сигнала в возбудимых тканях. В экспериментах in vitro было показано, что SNARE действительно вызывает слияние мембран, причем в весьма специфическом режиме (см. рис. 3) [17, 18].

Джеймс Ротман в своих работах подошел к изучаемому вопросу с другой стороны. В Стэнфордской лаборатории несколькими годами позже он с коллегами восстанавливал процесс транспорта in vitro, то есть в пробирке. Ученые пытались воссоздать процесс транспортировки белка вируса везикулярного стоматита в комплекс Гольджи в клетках млекопитающих (вирусный белок был выбран потому, что при инфекции он накапливается в клетках в больших количествах, и с ним удобно работать). В нескольких последовательно вышедших статьях Ротман описал в деталях клеточный транспорт белка и попутно выделил ключевые компоненты, необходимые для формирования и транспорта везикул. Первым найденным белком оказался NSF (N-ethylmaleimide-sensitive factor), затем был идентифицирован SNAP (soluble NSF-attachment protein). В совместной работе с Шекманом они установили, что белки NSF и SNAP соответствуют продуктам ранее идентифицированных Шекманом генов sec17 и sec 18. Таким образом, оказалось, что процесс внутриклеточного транспорта универсален среди эукариот и совпадает в деталях как у дрожжей, так и у млекопитающих.

Продолжая работу по выделению  ассоциированных с везикулами белков, Ротман обнаружил еще три ключевых белка: синаптобревин, SNAP-25 и синтаксин. Эти белки были ранее найдены другими учеными в синапсах (областях контакта между нейронами), однако их функции оставались неизвестными. Ротман объединил их в группу SNARE (soluble NSF-attachment protein receptors). Синаптобревин был ассоциирован с везикулами, а SNAP-25 и синтаксин — с клеточными мембранами. Это открытие позволило Ротману сформулировать SNARE-гипотезу — ключевую гипотезу, объясняющую принцип внутри- и межклеточного транспорта. Согласно ей, в процессе формирования и доставки везикул участвуют белки, принадлежащие к двум группам — v-SNARE (v — от vesicle ‘везикула’) и t-SNARE (t — от target ‘мишень’), которые специфически узнают друг друга. Благодаря специфическому узнаванию, доставка осуществляется точно в нужное место (рис. 4). Гипотеза была подтверждена в дальнейших работах как Ротмана, так и других научных групп. (Синаптобревин, помимо прочего, является мишенью при развитии ботулизма и столбняка.)

Схема, поясняющая принцип  везикулярного транспорта между  разными отделами клетки

Рис. 4. Схема, поясняющая принцип  везикулярного транспорта (SNARE-гипотезу) между разными отделами клетки. Пузырьки (везикулы) отпочковываются от мембраны одной из органелл (например, эндоплазматического  ретикулума) и получают «ключ» — один из белков семейства v-SNARE. Точная доставка осуществляется благодаря тому, что на целевой органелле есть специфический белок семейства t-SNARE, выступающий в роли «замка». Изображение с сайта www.zoology.ubc.ca

Томас Зюдхоф по образованию был нейрофизиологом и изучал, каким образом происходит передача сигнала в синапсах между нейронами. Его заинтересовал процесс выброса нейромедиатора в синаптическую щель. Молекулы нейромедиатора упаковываются в везикулы и точно в определенное время должны выделиться в пространство между мембранами двух нейронов (рис. 2, справа). Оказалось, что этот процесс зависит от внутриклеточных колебаний концентрации кальция. Зюдхоф сосредоточил свое внимание на двух белках — комплексине и синаптотагмине. В это время (начало 90-х годов) уже получила распространение технология, позволяющая выращивать нокаутных (см.: Нобелевская премия по физиологии и медицине — 2007, «Элементы», 12.10.2007) по определенному гену животных. Изучая мышей с нарушенной функцией генов, кодирующих комплексин или синаптотагмин, он определил, что эти два белка реагируют на концентрацию кальция и являются «привратниками», предотвращающими постоянное неконтролируемое образование везикул. Оказалось, что синаптотагмин, с одной стороны, является сенсором кальция, а с другой стороны, взаимодействует с SNARE-белками и запускает механизм формирования везикулы. Зюдхоф также идентифицировал белок Munc18, мутация в котором соответствовала дрожжевому фенотипу sec1-1, описанному Шекманом. Этот белок, и семейство, к которому он принадлежит, получили общее название SM-белков (от Sec/Munc). Оказалось, что вместе с SNARE-белками они участвуют в процессе формирования везикул.

Таким образом, работы Шекмана, Ротмана и Зюдхофа стали частями одной мозаики, описывающей транспортную систему клетки с участием пузырьков-везикул. Они во многом определили, как пузырьки формируются, как они находят свое место доставки и каким образом регулируется их образование точно в определенное время. Однако можно заметить, что в мозаике не хватает кусочка: везикулы внутри клетки не плавают сами по себе, а путешествуют по цитоскелету вдоль микротрубочек при помощи специальных моторных белков — динеина и кинезина. За изучение моторных белков и транспорта с их участием в 2012 году другая троица американских ученых получила престижную премию Ласкера. Эту премию считают предвестником Нобелевcкой, так что, возможно, недостающее звено в картине внутриклеточного транспорта в ближайшие годы тоже будет удостоено высочайшей награды (надо сказать, что и лауреаты этого года в разное время становились лауреатами премии Ласкера).

Везикулярный транспорт и медицина 
 
Работы Ротмана, Шекмана и Зюдофа приподняли завесу тайны над клеточным транспортом в клетке и показали, каким образом молекулы своевременно доставляются в нужное место. Несложно догадаться, что нарушения везикулярного транспорта, учитывая его роль в жизни клетки, приводят к серьезным болезням как нервной, так и эндокринной систем. 
 
Например, такие метаболические расстройства как диабет второго типа характеризуются нарушениями как в секреции инсулина, так и в инсулинзависимом транспорте глюкозы в мышечной и жировой тканях. Кроме того, клетки иммунитета используют везикулярный транспорт для секреции цитокинов и прочих иммунологических молекул, управляющих врожденным и приобретенным иммунитетом. 
 
В некоторых случаях эпилепсии выявляются мутантные формы белка MUNC-18-1, открытого Зюдофом и являющегося продуктом гена sec-1, описанного Шекманом. Мутации в генах MUNC-13-4, MUNC-18-2 и синтаксина-11, также входящих в систему везикулярного транспорта, могут вызывать семейный гематофагоцитарный синдром. При этом заболевании Т-киллеры, работающие не как положено, при встрече со своей «жертвой» инициируют реакцию гипервоспаления, иногда приводящего к смерти. На систему везикулярного транспорта могут действовать и различные токсины: например, ботулотоксин, вырабатываемый бактерией Clostriduim botulinum, расщепляет некоторые компоненты синаптического комплекса, что приводит к блокированию выброса медиаторов, параличу и смерти.

 

 

В триллионах клеток, составляющих организм человека, функцию расщепления  и удаления изношенных клеточных  компонентов выполняют лизосомы. Для расщепления использованных белков, липидов, а также осколков мембран и других клеточных компонентов лизосомы – в каждой клетки их несколько сотен – используют, в числе прочего, различные ферменты. Расщепленные до первичных биологических блоков, эти вещества выводятся за пределы лизосом, чтобы где-нибудь в другой части клетки оказаться собранными в новые клеточные компоненты.

Информация о работе Нобелевская премия по физиологии и медицине — 2013