Химия и биологическая роль элементов VIII Б группы

Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 15:54, реферат

Краткое описание

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).Одна из этимологий связывает праславянское *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely "черепаха и *glazъ "скала", с общей семой “камень”. Третья версия предполагает древнее заимствование из неизвестного языка.
Название природного карбоната железа (сидерита) происходит от лат. sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения

Содержание

1. Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе……………………3
2. Химические свойства железа, кобальта и никеля………...………..7
3. Медико-биологическое значение элементов VIIIБ группы……….13
4. Список литературы…………………………………………………..

Вложенные файлы: 1 файл

Реферат.Химия Пчелинцев М.Д..docx

— 49.73 Кб (Скачать файл)

Оренбургская  Государственная Медицинская Академия                                                           Кафедра химии и фармацевтической химии

 

Реферат

 

 

«Химия и биологическая роль    элементов VIII Б группы»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                        Выполнил: студент 119 группы

                                                                                  лечебного факультета

                                                                                  Пчелинцев М.Д.

                                                      Преподаватель: Шостак Е.И.

 

 

 

 

                                                        Оренбург 2013г

Содержание:

  1. Общая характеристика, краткие сведения об истории открытия     элементов и их распространённости в природе……………………3
  2. Химические свойства железа, кобальта и никеля………...………..7
  3. Медико-биологическое значение элементов VIIIБ группы……….13
  4. Список литературы…………………………………………………..20

 

 

Общая характеристика, краткие  сведения об истории открытия элементов  и их распространённости в природе.

 

Железо (Fe).

Распространенность  в природе.

В природе железо редко  встречается в чистом виде, чаще всего оно встречается в составе  железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра [1], [№ 11, стр.650, обз.3], [№ 12, стр.328, обз.2].

Происхождение названия.

Имеется несколько версий происхождения славянского слова  «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).Одна из этимологий связывает праславянское *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely "черепаха и *glazъ "скала", с общей семой “камень”. Третья версия предполагает древнее заимствование из неизвестного языка.

Название природного карбоната  железа (сидерита) происходит от лат. sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Железо как инструментальный материал известно с древнейших времён, самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это наконечники для стрел и украшения из метеоритного железа, то есть, сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), из которого состоят метеориты. От их небесного происхождения идёт, видимо, одно из наименований железа в греческом языке: «сидер» (а на латыни это слово значит «звёздный»).

Изделия из железа, полученного  искусственно, известны со времени  расселения арийских племён из Европы в Азию и острова Средиземного моря (4—3-е тысячелетие до н. э.). Самый  древний железный инструмент из известных — стальное долото, найденное в каменной кладке пирамиды Хеопса в Египте (построена около 2550 года до н. э.). Железо часто упоминается в древнейших (3-е тысячелетие до н. э.) текстах хеттов, основавших свою империю на территории современной Анатолии в Турции [1], [7].

Общая характеристика. Положение в периодической системе  Д. И. Менделеева.

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 26. Обозначается символом Fe (лат. Ferrum) [1].

 

Кобальт (Со).

Нахождение в  природе.

Массовая доля кобальта в  земной коре 4×10−3%. Кобальт входит в  состав минералов: каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтин CoAs2, скуттерудит (Co, Ni)As3 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо, никель, марганец и медь. Содержание в морской воде приблизительно (1,7)×10−10% [1].

Происхождение названия.

Краткие сведения об открытии.

Соединения кобальта известны человеку с глубокой древности, синие  кобальтовые стёкла, эмали, краски находят  в гробницах Древнего Египта. Так  в гробнице Тутанхамона нашли  много осколков синего кобальтового стекла, не известно, было ли приготовление стёкол и красок сознательным или случайным. Первое приготовление синих красок относится к 1679 г.

Название химического  элемента кобальт происходит от нем. Kobold — домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка. Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда. Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа.

В 1735 году шведский минералог  Георг Бранд сумел выделить из этого минерала неизвестный ранее металл, который и назвал кобальтом. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет — этим свойством пользовались ещё в древних Ассирии и Вавилоне [1].

Общая характеристика, положение в периодической системе  Менделеева.

Ко́бальт — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27 . Обозначается символом Co (лат. Cobaltum). Простое вещество кобальт — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом [1].

 

Никель (Ni).

Распространенность  в природе.

Никель довольно распространён  в природе — его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах:

  • никелин (красный никелевый колчедан, купферникель) NiAs
  • хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2
  • гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты
  • магнитный колчедан (Fe, Ni, Cu)S
  • мышьяково-никелевый блеск (герсдорфит) NiAsS,
  • пентландит (Fe,Ni)9S8

В растениях в среднем 5×10−5 весовых процентов никеля, в морских животных — 1,6×10−4, в  наземных — 1×10−6, в человеческом организме  — 1…2×10−6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда [1].

История. Происхождение  названия.

Название своё этот элемент  получил от злого духа гор, который, согласно немецкой мифологии, подбрасывал  искателям меди минерал, похожий  на медную руду; ср. нем. Nickel - озорник.

Никель (англ., франц. и нем. Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную руду и применялась в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что приблизительно означает «Медный дьявол». Руду эту (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог Кронштедт. Ему удалось получить зелёный окисел и путём восстановления последнего — новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста. Никкел — ругательное слово на языке горняков. Оно образовалось из искажённого Nicolaus — родового слова, имевшего несколько значений. Но главным образом слово Nicolaus служило для характеристики двуличных людей; кроме того, оно обозначало «озорной маленький дух», «обманчивый бездельник» и т. д. В русской литературе начала XIX в. употреблялись названия николан (Шерер, 1808), николан (Захаров, 1810), николь и никель (Двигубский, 1824) [1], [6].

Общая характеристика. Положение в периодической системе  Д. И. Менделеева.

Ни́кель — элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель — это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой защитной плёнкой оксида. Химически малоактивен [1].

 

 

 

Химические свойства железа, кобальта и никеля.

 

Железо (Fe).

Основные степени окисления  железа — +2 и +3.

При хранении на воздухе  при температуре до 200 °C железо постепенно покрывается плотной плёнкой  оксида, препятствующего дальнейшему  окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3•xH2O.

С кислородом железо реагирует  при нагревании. При сгорании железа на воздухе образуется оксид Fe3O4, при  сгорании в чистом кислороде —  оксид Fe2O3. Если кислород или воздух пропускать через расплавленное  железо, то образуется оксид FeO. При нагревании порошка серы и железа образуется сульфид, приближённую формулу которого можно записать как FeS.

При нагревании железо реагирует  с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора до температуры 200—300 °C. При хлорировании железа (при температуре около 200 °C) образуется летучий димер Fe3Cl6. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeCl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа(II). При взаимодействии железа и иода образуется иодид Fe3I8.

При нагревании железо реагирует  с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды  FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое  железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (η5-C5H5)2Fe.

Чистое металлическое  железо устойчиво в воде и в  разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных  серной и азотной кислотах из-за пассивации поверхности металла  прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами  железо реагирует с образованием солей железа(II):

Fe + 2HCl → FeCl2 + H2↑;

Fe + H2SO4 → FeSO4 + H2↑.

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа(III):

2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2↑ + 6H2O.

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O.

Гидроксид железа(III) Fe(OH)3 проявляет слабо амфотерные свойства, он способен реагировать только с концентрированными растворами щелочей:

Fe(OH)3 + 3КОН → K3[Fe(OH)6].

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

Соединения железа(III) в  растворах восстанавливаются металлическим  железом:

Fe + 2FeCl3 → 3FeCl2.

При хранении водных растворов  солей железа(II) наблюдается окисление  железа(II) до железа(III):

4FeCl2 + O2 + 2H2O → 4Fe(OH)Cl2.

Из солей железа(II) в  водных растворах устойчива соль Мора — двойной сульфат аммония  и железа(II) (NH4)2Fe(SO4)2•6Н2O.

Железо(III) способно образовывать двойные сульфаты с однозарядными  катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

При действии газообразного  хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) — ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о  получении под действием сильных  окислителей соединений железа(VIII).

Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN−. При взаимодействии ионов Fe3+ с анионами SCN− образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4− выпадает ярко-синий осадок берлинской лазури:

4K4[Fe(CN)6] + 4Fe3+ → 4KFeIII[FeII(CN)6]↓ + 12K+.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадок турнбулевой сини:

3K3[Fe(CN)6] + 3Fe2+→ 3KFe2[Fe3(CN)6]↓ + 6K+.

Интересно, что берлинская лазурь и турнбулева синь — две формы одного и того же вещества, так как в растворе устанавливается равновесие:

KFe3[Fe2(CN)6] ↔ KFe2[Fe3(CN)6] [9], [№ 10, стр.277, обз.3], [№ 11, стр.667, обз.2], [№ 12, стр.328, обз.5].

 

Кобальт (Со).

Конфигурация внешних  электронных оболочек атома Кобальта 3d74s2. В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(Ш). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н2О = СоО + Н2. С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоClи сульфата CoSO4. Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO3)2. Концентрированная HNO3пассивирует Кобальт. Названные соли Со (П) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl2, 39,3 г CoSO4, 136,4 г Co(NO3)2]. Едкие щелочи осаждают из растворов солей Со2+ синий гидрооксид Со(ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН)3. Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со3О4, или СоО·Со2О- соединение типа шпинели. Соединение того же типа CoAl2Оили СоО·Al2Осинего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al2Опри температуре около 1000 °С.

Информация о работе Химия и биологическая роль элементов VIII Б группы