Автор работы: Пользователь скрыл имя, 29 Марта 2014 в 17:24, курсовая работа
Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом, основателем евгеники Ф. Гальтоном (1822—1911), внесшим также большой вклад в исследование индивидуальных различий.
Версия шаблона |
2.1 |
ЦДОР |
|
Вид работы |
Творческое эссе |
Название дисциплины |
Математические методы в психологии |
Тема |
Сущность, условия и задачи факторного анализа |
Фамилия |
|
Имя |
|
Отчество |
|
№ контракта |
1. Сущность, условия и задачи факторного анализа
Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом, основателем евгеники Ф. Гальтоном (1822—1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением факторного анализа в психологию занимались такие ученые как Ч. Спирмен (1904, 1927, 1946), Л. Терстоун (1935, 1947, 1951) и Р. Кеттел (1946, 1947, 1951). Также нельзя не упомянуть английского математика и философа К. Пирсона, в значительной степени развившего идеи Ф. Гальтона, американского математика Г. Хотеллинга, разработавшего современный вариант метода главных компонент.
Внимания заслуживает и английский психолог Генри Айзенк, широко использовавший факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др. Сегодня факторный анализ включён во все пакеты статистической обработки данных.
Итак, факторный анализ - это статистический инструмент, довольно часто используемый в психологии. Многочисленные варианты его использования включают конструирование тестов, выявление основных параметров личности и способностей, установление того, сколько отдельных психологических характеристик (то есть его отдельных черт) измеряется набором тестов или заданиями теста.
Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время сделать это компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических корреляций между наблюдаемыми переменными.
Таким образом, можно выделить две основные цели факторного анализа:
- определение взаимосвязей между переменными, (классификация переменных), т. е. «объективная R-классификация»;
- сокращение числа переменных необходимых для описания данных.
При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей. Например, анализируя оценки, полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором.
Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка. Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов (МГК).
Факторный анализ может быть:
Итак, так как задачами факторного анализа являются:
- сокращение числа переменных,
- определение структуры взаимосвязей между переменными, т.е. классификация переменных.
Поэтому факторный анализ используется как метод сокращения данных или как метод структурной классификации.
Необходимость применения факторного анализа в психологии как одного из методов многомерного количественного описания (измерения, анализа) наблюдаемых переменных в первую очередь следует из многомерности объектов, изучаемых нашей наукой. Сразу же определим, что под многомерным представлением объекта мы будем понимать результат его оценивания по нескольким различным и существенным для его описания характеристикам-измерениям, т.е. присвоение ему сразу нескольких числовых значений. Из этого вполне естественно следуют два очень важных вопроса: насколько существенны и различны эти используемые характеристики. Первый вопрос связан с всесторонностью и полнотой описания объекта психологического измерения, а второй (в большей степени) - с выбором некоторого минимально разумного количества этих характеристик.
Поясним сказанное выше на примере. Чем отличается хороший, профессионально сделанный психологический опросник от многочисленных “полупродуктов-полушуток”, во множестве публикуемых в периодической печати для широкой публики или в книгах непрофессионалов-дилетантов? Прежде всего, тем, что в первом случае объект психологического измерения (конструкт) описывается разносторонне и полно, и, кроме того, в нем не содержится лишних, не относящихся к делу (т.е. “не работающих” на ту или иную шкалу) вопросов. Таким образом, при использовании методов многомерных измерений психологических характеристик наиболее важны две проблемы - описать объект измерения всесторонне и, в тоже время, компактно. С известной долей обобщения можно сказать, что это одни из основных задач, решаемых факторным анализом.
Понятно, что информативность многомерного описания объекта нашего изучения возрастает с увеличением количества используемых признаков или измерительных шкал. Однако очень трудно выбрать сразу и существенные, и независимые друг от друга характеристики. Этот выбор порой непрост и долог. Как правило, исследователь начинает с заведомо избыточного количества признаков, и в процессе работы (например, по созданию нового опросника или анализу экспериментальных данных) сталкивается с необходимостью адекватной интерпретации большого объема полученных данных и их компактной визуализации.
Анализируя полученные данные, исследователь замечает тот факт, что оценки изучаемого объекта, полученные по некоторым шкалам, сходны между собой, а если оценить это сходство количественно и подсчитать коэффициент корреляции, то он может оказаться достаточно высоким. Другими словами, возникает вопрос о том, что многие характеристики (т.е. переменные, по которым производилось измерение нашего объекта), вероятно, в некоторой степени дублируют друг друга, а вся полученная информация в целом избыточна. Внимательный исследователь, даже незнакомый с основами факторного анализа, сразу же может сообразить, что за связанными друг с другом (коррелирующими) переменными, по-видимому, стоит влияние некоторой скрытой, латентной переменной, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Очень часто эту гипотетическую латентную переменную называют фактором. Приблизительно такая логика заставила Чарлза Спирмена, психолога Оксфордского университета, в ходе анализа результатов тестирования способностей учеников английских школ предположить существование единого, генерального фактора интеллектуального развития человека, влияющего на многочисленные показатели разнообразных интеллектуальных тестов.
Таким образом, давно известный метод научного познания - обобщение -приводит нас к возможности и необходимости выделения факторов как переменных более общего, более высокого порядка. Очень часто обобщение позволяет по-новому взглянуть на полученные данные, заметить те связи между исходными характеристиками (переменными), которые ранее были не очевидны, а после этого выйти на более высокий уровень понимания сущности измеряемого объекта.
Такого рода обобщение (то есть сокращение размерности полученных данных) дает возможность использовать очень мощное средство научного анализа - графическое представление полученных данных. Понятно, что сокращение размерности результатов многомерного измерения какого-либо объекта до двух-трех позволит исследователю в очень наглядной и компактной форме представить весь объем полученных данных, выйдя за рамки логического анализа массы цифр, собранных в огромную таблицу. Имея в виду важное значение наглядно-образного мышления, трудно переоценить преимущества пространственного (графического) осмысления анализируемых данных. Таким образом, факторный анализ может рассматриваться и как средство компактной визуализации данных.
Выделение в ходе анализа данных общего (для ряда переменных) фактора позволяет решать исследователю еще одну непростую задачу - оценивать некоторую скрытую от непосредственного наблюдения переменную (фактор) опосредованно, косвенно - через ее проявление (влияние) в ряде других, прямо измеряемых переменных. Подобным образом в психодиагностике личности были обнаружены, экстрагированы и измерены многие личностные конструкты, например: классический конструкт Генри Айзенка импульсивность, оцениваемый в тесте EPI по ответам испытуемых на ряд вопросов, с разных сторон отражающих этот конструкт. Более того, факторный анализ позволяет измерять не только прямо ненаблюдаемые (скрытые) переменные, но и оценивать определенные качества, которые могут намеренно скрываться и искажаться испытуемым при прямом их тестировании, однако проявляться (т.е. быть измеренными) косвенно через различные связанные с ними качества, оцениваемые прямо.
В ходе научного исследования факторный анализ может выступать в двух ипостасях: как разведочный (эксплораторный) и как проверочный (конфирматорный) метод анализа данных. В первом случае факторный анализ используется ex post factum, т.е. для анализа уже измеренных в эмпирическом исследовании переменных и, фактически, помогает исследователю их структурировать; на этом этапе совсем не обязательно делать априорные предположения о количестве факторов и их связях с наблюдавшимися переменными. Здесь главное значение факторного анализа - структурировать связи между переменными, помочь сформулировать рабочие гипотезы (пусть иногда и очень умозрительные) о причинах обнаруженных связей. Как правило, такое использование факторного анализа характерно для начальной, ориентировочной стадии работы, когда многое неявное кажется явным, непростое — простым, и наоборот. В отличие от разведочного, конфирматорный факторный анализ используется на более поздних стадиях исследования, когда в рамках какой-либо теории или модели сформулированы четкие гипотезы, связи между переменными и факторами достаточно определены, и исследователь их может прямо указать. Тогда конфирматорный факторный анализ выступает как средство проверки соответствия сформулированной гипотезы полученным эмпирическим данным.
Обобщая вышесказанное, выделим основные цели использования факторного анализа:
1. Понижение размерности числа используемых переменных за счет их объяснения меньшим числом факторов. Обобщение полученных данных.
2. Группировка, структурирование и
компактная визуализация
3. Опосредованное, косвенное оценивание изучаемых переменных в случае невозможности или неудобства их прямого измерения.
4. Генерирование новых идей на
этапе разведочного анализа. Оценка
соответствия эмпирических
Важное отличие факторного анализа от всех других методов в том, что его нельзя применять для обработки первичных, или, как говорят, "сырых", экспериментальных данных, т.е. полученных непосредственно при обследовании испытуемых. Материалом для факторного анализа служат корреляционные связи, а точнее – коэффициенты корреляции Пирсона, которые вычисляются между переменными, включенными в обследование. Иными словами, факторному анализу подвергаются корреляционные матрицы.
Используется для конструирования тестов и методик; для изучения любых экспериментальных наблюдений, их структуры, исходя из внешних признаков.
Главное понятие факторного анализа – фактор. Это искусственный статистический показатель, возникающий в результате специальных преобразований таблицы коэффициентов корреляции между изучаемыми психологическими признаками, или матрицы корреляций. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, выделяемые в результате факторизации, как правило, неравноценны по своему значению.
Метод позволяет составлять гипотезы относительно природных процессов, присущих самому измеряемому свойству. Так же факторный анализ позволяет установить для большого числа признаков узкий набор свойств, характеризующих связь между признаками и факторами.
Факторный анализ имеет следующие стадии:
1. Вычисление корреляционной матрицы для всех переменных, участвующих в анализе,
2. Извлечение факторов,
3. Вращение факторов для создания упрощенной структуры,
4. Интерпретация факторов.
Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:
Информация о работе Сущность, условия и задачи факторного анализа