Автор работы: Пользователь скрыл имя, 08 Января 2014 в 22:25, контрольная работа
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность. Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество.
Введение……………………………………………………………………….3
Погрешность измерений, формы ее выражения и причины, ее вызывающие…………………… …………………………………..…….….4
Классификация погрешностей средств измерений…………………... 5
Задача………………..……………………………………………………..10
Литература…………………………………………………………………… 12
МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА А.С. КОРОЛЕВА
(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (СГАУ)
ИНСТИТУТ ПЕЧАТИ
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: «Метрология, стандартизация и сертификация»
Вариант - 0
Выполнила: студентка гр. 8355Б247
Кузнецова К.С.
Самара 2013
СОДЕРЖАНИЕ
Введение…………………………………………………………
Погрешность измерений, формы ее выражения и причины, ее вызывающие…………………… …………………………………..…….….4
Классификация погрешностей средств измерений…………………... 5
Задача………………..…………………………………………
Литература……………………………………………………
Введение.
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.
Процесс оценки
погрешности измерений
Погрешность измерений, формы ее выражения и причины, ее вызывающие.
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. Это отклонение принято называть ошибкой измерения. Возможно оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T = 2,8 ± 0,1 означает, что истинное значение величины T лежит в интервале от 2,7 до 2,9 с некоторой оговорённой вероятностью.
1. Классификация погрешностей средств измерений.
1. По способу выражения погрешности делят на:
Абсолютная погрешность измерения — погрешность, выраженная в единицах измеряемой величины. Так, погрешность X в формуле (1.1)
(1.1)
является абсолютной погрешностью. Недостатком такого способа выражения этих величин является то, что их нельзя использовать для сравнительной оценки точности разных измерительных технологий. Действительно = 0,05 мм при Х = 100 мм соответствует достаточно высокой точности измерений, а при Х=1 мм — низкой. Этого недостатка лишено понятие «относительная погрешность», определяемое выражением
(1.2)
Таким образом, относительная погрешность измерения — отношение абсолютной погрешности измерения к истинному значению измеряемой величины или результату измерений.
Для характеристики точности
СИ часто применяют понятие «приве
(1.3)
где Хн — значение измеряемой величины, условно принятое за нормирующее значение диапазона СИ. Чаще всего в качестве Хн - принимают разность между верхним и нижним пределами этого диапазона.
Таким образом, приведенная погрешность средства измерения — отношение абсолютной погрешности средства измерения в данной точке диапазона СИ к нормирующему значению этого диапазона.
2. По источнику возникновения погрешности измерений делят на:
Инструментальная погрешность измерения — составляющая погрешности измерения, обусловленная несовершенством применяемого СИ: отличием реальной функции преобразования прибора от его калибровочной зависимости, неустранимыми шумами в измерительной цепи, запаздыванием измерительного сигнала при его прохождении в СИ, внутренним сопротивлением СИ и др. Инструментальная погрешность измерений разделяется на основную (погрешность измерений при применении СИ в нормальных условиях) и дополнительную (составляющая погрешности измерений, возникающая вследствие отклонения какой-либо из влияющих величин от ее номинального значения или ее выхода за пределы нормальной области значений). Метод их оценивания будет рассмотрен ниже.
Методическая погрешность измерений — составляющая погрешности измерений, обусловленная несовершенством метода измерений. К ней относят погрешности, обусловленные отличием принятой модели объекта измерения от реального объекта, несовершенством способа воплощения принципа измерений, неточностью формул, применяемых при нахождении результата измерений, и другими факторами, не связанными со свойствами СИ. Примерами методических погрешностей измерений являются:
• погрешности изготовления цилиндрического тела (отличие от идеального круга) при измерении его диаметра;
• несовершенство определения диаметра круглого тела как среднего из значений диаметра в двух его заранее выбранных перпендикулярных плоскостях;
• погрешность измерений вследствие кусочно-линейной аппроксимации нелинейной калибровочной зависимости СИ при вычислении результата измерений;
• погрешность статического косвенного метода измерений массы нефтепродукта в резервуаре вследствие неравномерности плотности нефтепродукта по высоте резервуара.
Субъективная (личная) погрешность измерения — составляющим погрешности измерения, обусловленная индивидуальными особенностями оператора, т. е. погрешность отсчета оператором показаний по шкалам СИ. Они вызываются состоянием оператора, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики субъективной погрешности измерений определяют с учетом способности «среднего оператора» к интерполяции в пределах цены деления шкалы измерительного прибора. Наиболее известная и простая оценка этой погрешности — ее максимальное возможное значение в виде половины цены деления шкалы.
Грубой погрешностью измерений (промахом) называют погрешность измерения, существенно превышающую ожидаему при данных условиях погрешность. Они возникают, как правило из-за ошибок или неправильных действий оператора (неверный отсчет, ошибка в записях или вычислениях, неправильное включение СИ и др.). Возможной причиной промаха могут быть сбои работе технических средств, а также кратковременные резкие из менения условий измерений. Естественно, что грубые погрешности должны быть обнаружены и исключены из ряда измерений.
Более содержательно деление на систематические и случайные погрешности.
Систематическая погрешность измерения — составляющая погрешности измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же величины. Систематические погрешности подлежат исключению насколько возможно, тем или иным способом. Наиболее известный из них — введение поправок на известные систематически погрешности. Однако полностью исключить систематическую погрешность практически невозможно, и какая-то ее небольшая часть остается и в исправленном (введением поправок) результате измерений. Эти остатки называются неисключенной систематической погрешностью (НСП). НСП — погрешность измерений, обусловленная погрешностями вычисления и введения поправок или же систематической погрешностью, на действие которой по правка не введена.
Например, с целью исключения систематической погрешности, измерения, обусловленной нестабильностью функции npeoбpaзования аналитического прибора, периодически проводят его калибровку по эталонным мерам (поверочным газовым смесям или стандартным образцам). Однако, несмотря на это, в момент измерения все равно будет некоторое отклонение действительной функции преобразования прибора от калибровочной зависимости, обусловленное погрешностью калибровки и дрейфом функции преобразования прибора за время, прошедшее после калибровки. Погрешность измерения, обусловленная этим отклонением, является НСП.
Случайной погрешностью измерения называется составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины. Причины случайных погрешностей многообразны: шумы измерительного прибора, вариация его показаний, случайные колебания параметров электрической сети и условий измерений, погрешности округления отсчетов и многие другие. В появлении таких погрешностей не наблюдается какой-либо закономерности, они проявляются при повторных измерениях одной и той же величины в виде разброса результатов измерений. Поэтому оценивание случайных погрешностей измерений возможно только на основе математической статистики (эта математическая дисциплина родилась как наука о методах обработки рядов измерений, отягощенных случайными погрешностями).
В отличие от систематических, случайные погрешности нельзя исключить из результатов измерений путем введения поправок, однако их влияние можно существенно уменьшить проведением многократных измерений.
Задача.
По заданным
значениям весомости и
Показатель |
Весомость |
1 отт. |
2 отт. |
3 отт. |
Градационная Передача |
0,7 |
0,8 |
0,9 |
1,0 |
Равномерность Пропечатки |
0,5 |
0,85 |
0,9 |
0,95 |
Четкость |
0,9 |
0,6 |
1,0 |
1,0 |
Графические искажения |
0,65 |
0,9 |
1,0 |
0,7 |
Полученные значения сопоставить по абсолютной величине, по разности комплексных показателей первого и последнего оттиска, по характеру изменения.
Литература.
http://ru.wikipedia.org/wiki/%
Крылова Г.Д. основы стандартизации, сертификации, метрологии. – М. 1999г.
http://abc.vvsu.ru/Books/
http://metrob.ru/HTML/
А.А. Гончаров, В.Д. Копылов. Метрология, стандартизация и сертификация. М.: Издательский центр «Академия», 2004
http://be5.biz/ekonomika/m003/
http://www.nbuv.gov.ua/portal/