Дизель на легковом автомобиле

Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 16:16, лекция

Краткое описание

Придуманный в конце прошлого века Рудольфом Дизелем двигатель, получивший имя изобретателя, еще недавно считался у нас атрибутом ну разве что большегрузных автомобилей типа МАЗов и КамАЗов. Отечественные разработки дизелей для легковых автомобилей, к сожалению, так и не увидели свет. Но время неумолимо идет вперед — сегодня на дорогах России уже десятки тысяч дизельных легковых автомобилей и микроавтобусов. А для их грамотной эксплуатации, обслуживания и ремонта необходимо знать устройство дизельного двигателя.

Вложенные файлы: 1 файл

теор дизеля.docx.doc

— 132.00 Кб (Скачать файл)

Дизель  на легковом автомобиле

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук, 
ГРИГОРИЙ ЦВЕЛЕВ

Придуманный в  конце прошлого века Рудольфом Дизелем  двигатель, получивший имя изобретателя, еще недавно считался у нас  атрибутом ну разве что большегрузных  автомобилей типа МАЗов и КамАЗов. Отечественные разработки дизелей для легковых автомобилей, к сожалению, так и не увидели свет. Но время неумолимо идет вперед — сегодня на дорогах России уже десятки тысяч дизельных легковых автомобилей и микроавтобусов. А для их грамотной эксплуатации, обслуживания и ремонта необходимо знать устройство дизельного двигателя. 
 
По конструкции дизель мало отличается от обычного бензинового мотора — те же коленчатый вал, шатуны, клапаны… Правда, детали усилены, чтобы воспринимать более высокие нагрузки, возникающие при сгорании топлива — ведь степень сжатия у дизеля в два с лишним раза выше (около 19-24). 
 
Принципиальное отличие дизеля заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового двигателя, как известно, смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. У дизеля, напротив, в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры самовоспламенения топлива (700-800°С), оно впрыскивается в камеры сгорания форсунками под большим давлением (10-30 МПа). Для создания такого давления применяются специальные топливные насосы высокого давления (ТНВД), приводимые от коленчатого вала двигателя. Свечи у дизеля тоже есть, но они являются свечами накаливания и разогревают воздух в камере сгорания, чтобы облегчить запуск. 
 
Подобная организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет высокую экономичность дизельного двигателя. Управление осуществляется не дроссельной заслонкой (ее может просто не быть), а только изменением подачи топлива. 
 
Дизель из-за особенностей своего рабочего процесса имеет высокий крутящий момент в широком диапазоне частот вращения, что делает его гибким в управлении, особенно при работе в тяжелых дорожных условиях. Да и в экологическом плане дизель лучше — при работе на бедных смесях выбросы вредных веществ, особенно оксида углерода, заметно меньше, чем у бензиновых моторов. 
 
Разумеется, дизель имеет и недостатки. Главные — повышенные шум и вибрация. Они обусловлены высокой степенью сжатия и быстрым нарастанием давления в цилиндре при самовоспламенении смеси. Дизель трудно запустить в холодное время года. Мощность дизельного двигателя ниже, чем бензинового того же рабочего объема, в основном, из-за пониженной максимальной частоты вращения (обычно она не превышает 4500-4800 об/мин.), а масса дизеля больше. Впрочем, применение многоклапанных головок, развитие систем топливоподачи, в том числе электронного управления впрыском топлива, постепенно сглаживают эти недостатки. 
 
Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой (рис.1а) — их также называют дизелями с непосредственным впрыском (Direct Injection), топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. До недавнего времени подобные решения применялись, в основном, на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями организации процесса сгорания, а также с повышенным шумом, особенно на непрогретом двигателе. 
 
В последние годы благодаря применению ТНВД с электронным управлением и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой на частотах вращения до 4500 об/мин, улучшить на 15-20% его экономичность, существенно снизив шум и вибрацию. И теперь такие двигатели для легковых автомобилей широко применяют фирмы AUDI, Ford, Toyota и даже известный своей осторожностью Mercedes. В России наиболее распространены следующие автомобили с такими дизелями: Ford Transit (2,5 л), AUDI 1,9 TDI (1,9 л) и Audi 100 (2,5 л). 
 
В дизелях с разделенной камерой подача топлива осуществляется не в цилиндр, а в дополнительную камеру. В наиболее распространенных вихрекамерных дизелях (рис.1б) такая камера (она называется вихревой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался. Это способствует хорошему перемешиванию впрыскиваемых топлива и воздуха и самовоспламенению смеси. Именно такая схема первоначально позволила без больших трудностей добиться высокой частоты вращения, необходимой для двигателей легковых автомобилей. Поэтому вихрекамерные дизели пока составляют большинство (около 90%) среди устанавливаемых на легковые автомобили. 
 
Другой тип дизеля — предкамерный, имеет специальную вставную форкамеру (рис.1в), связанную с цилиндром несколькими небольшими каналами или отверстиями. Их сечение подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью. Это определяет целый ряд преимуществ предкамерного дизеля. Среди них большой ресурс, низкий шум, более полное сгорание топлива и низкая токсичность выхлопных газов, а также малое изменение крутящего момента по частоте вращения. 
 
Данная схема широко применяется фирмой Mercedes для легковых автомобилей. Преимущества этой схемы, помноженные на традиционную надежность, фактически делают дизельные двигатели Mercedes лучшими. И это — несмотря на то, что по экономичности предкамерные дизели обычно несколько уступают вихрекамерным и с непосредственным впрыском, а их конструкция, как правило, сложнее и дороже. Последние модели дизелей Mercedes — ОМ 604, 605 и 606 — имеют четырехклапанные головки цилиндров и электронное управление впрыском топлива. Это позволило поднять их мощность на 25% и улучшить экономичность на 8-10%, приблизив эти параметры к лучшим образцам дизелей других типов. 
 
Характерная деталь в конструкции дизелей — это поршень. Он существенно усилен по сравнению с бензиновым двигателем, его стенки значительно толще, поршневой палец имеет увеличенный диаметр, а поршневые кольца — высоту. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Различия других узлов и деталей не столь существенны и обусловлены требованиями надежности, компоновочными соображениями и традициями фирмы. Правда, следует заметить, что наиболее надежны в эксплуатации те двигатели, у которых привод газораспределительного механизма и ТНВД осуществляется цепью или шестернями (все двигатели Mercedes, BMW M51, Peugeot XD2, XD3, Nissan TD23, 25,27 и другие). Ремень, как показывает практика, несмотря на определенные достоинства, снижает надежность дизеля, так как при его обрыве двигатель обычно выходит из строя. 
 
Очень эффективен для повышения мощности дизелей наддув. В отличие от бензиновых двигателей у дизеля турбонаддув работает во всем диапазоне частот вращения — ведь благодаря высокой степени сжатия давление отработавших газов здесь в 1,5-2 раза выше. Особенно высокое форсирование достигается промежуточным охлаждением воздуха, сжатого в компрессоре, перед его поступлением в двигатель. Для этого используют специальные радиаторы-охладители или интеркулеры (intercooler). Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки. 
 
Особое место в конструкции дизелей занимает система подачи топлива. Высокие давления впрыска делают ее достаточно сложной, от нее во многом зависят мощность и экономичность двигателя, а также его экологические характеристики. В эксплуатации с нарушениями в работе системы подачи топлива связано много различных неисправностей. Поэтому системам питания дизелей приходится уделять большое внимание и в обслуживании, и в ремонте. 
 
Основным узлом топливной системы дизеля является топливный насос высокого давления. Его главные функции — нагнетание топлива в форсунки в строго дозированном количестве и обеспечение необходимого момента начала впрыскивания (он определяется углом опережения впрыска по аналогии с углом опережения зажигания у бензиновых двигателей). 
 
На дизелях легковых автомобилей применяются три типа ТНВД. Рассмотрим их более подробно. 
 
Плунжерные рядные насосы типа М или MW фирмы Bosch применяются сейчас, в основном, только фирмой Mercedes. Эти насосы сложны по конструкции, но обладают, пожалуй, максимальными надежностью и долговечностью. Конструктивно плунжерные ТНВД имеют отдельные нагнетательные секции на форсунку каждого цилиндра с приводом от кулачкового вала насоса. Каждая секция состоит из двух прецизионных (т. е. сверхточно выполненных) элементов — плунжера и нагнетательного клапана. Плунжер служит для нагнетания топлива в форсунку и установлен в корпусе насоса с очень малым зазором — менее 1 мкм. Кроме того, плунжер управляет количеством топлива, подаваемого к форсунке. Нагнетательный клапан необходим для быстрого запирания топливопровода, соединяющего насос и форсунку, и поддержания небольшого остаточного давления в топливопроводе между впрысками. 
 
В распределительном насосе типа VE фирмы Bosch (подобные насосы производятся также японской фирмой Diesel KiKi по лицензии Bosch) система нагнетания имеет только один плунжер-распределитель, который совершает поступательные движения для нагнетания топлива и вращение для распределения топлива по форсункам. Поступательно-вращательное движение плунжера обеспечивается за счет его контакта с шаговым диском через ролики, при этом плунжер выполняет за один оборот диска столько циклов нагнетания, сколько цилиндров у двигателя. 
 
В распределительных насосах типа DPC французской фирмы Lucas Rotodiesel и DPA, DPS английской фирмы Lucas-CAV систему нагнетания составляет пара противолежащих поршней, выполняющих поступательные движения навстречу друг другу. Нагнетание топлива происходит здесь в результате действия на поршни роликовых толкателей, набегающих на кулачки обоймы подшипника ротора. Распределение топлива по форсункам выполняется за счет разделителя, вращающегося вместе с поршнем и соединяющего или разъединяющего в определенных положениях насос с форсунками. 
 
Чтобы ТНВД создавал необходимое давление впрыскивания, топливо должно поступать к плунжерной паре под небольшим давлением. Для этого используют насосы предварительной подкачки (низкого давления). В рядных ТНВД такой насос вынесен наружу и приводится от кулачкового вала двигателя, в то время как в распределительных насосах он установлен внутри корпуса самого ТНВД. 
 
Конечным элементом топливной системы дизеля является форсунка. Она обычно заворачивается в головку блока цилиндров, но в некоторых дизелях прижимается специальным зажимом. Поскольку со стороны распылителя на форсунку воздействуют горячие газы, между ней и головкой устанавливают противопригарную шайбу, уплотняющую соединение и способствующую отводу тепла от форсунки. 
 
Распылитель является основной деталью форсунки. В дизелях легковых автомобилей обычно применяют многоструйные или штифтовые распылители. Первый тип применяется в дизелях с непосредственным впрыском, второй — в дизелях с разделенной камерой сгорания. 
 
Давление впрыска определяется усилием пружины распылителя. Под действием давления топлива в топливопроводе игла распылителя поднимается, и происходит впрыск. В момент, когда плунжер ТНВД прекращает нагнетание, давление резко падает, и игла распылителя садится на седло, отсекая подачу. 
 
Еще одна специфическая принадлежность дизеля — система предпускового подогрева. У большинства дизелей в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900°С, о чем водителю сигнализирует специальная контрольная лампа. Как только лампа погаснет, двигатель готов к запуску. Электропитание со свечей снимается автоматически после запуска. В холодное время года это происходит не сразу, а через 15-20 с, чтобы обеспечить устойчивость работы непрогретого двигателя. 
 
На некоторых дизелях (например Ford Transit) в виде пускового устройства применен электрофакельный подогрев. Он включает свечу накаливания, объединенную со специальной форсункой. Топливо к пусковому устройству подается из отдельного поплавкового механизма. После запуска, как только снимается напряжение со свечи, прекращается и подача топлива к форсунке. 
 
Современные системы предпускового подогрева в сочетании с усовершенствованной конструкцией двигателей обеспечивают устойчивый пуск исправного дизеля при температуре до -25°С, а иногда и до -30°С. 
 
В процессе эксплуатации в дизелях возникает целый ряд неисправностей, характерных только для этого типа двигателей. Не вдаваясь в подробности (это темы наших будущих материалов), отметим, что значительными ресурсом и надежностью обладают дизели Mercedes, причем всех категорий. В то же время в наших российских условиях (а они являются, как известно, неплохим полигоном для испытаний) заметно уступают многим фирмам дизели VW, хотя при этом они имеют отличную ремонтопригодность. В любом случае оценка качеств того или иного автомобиля с дизельным двигателем всегда носит оттенок субъективности. То же можно сказать о сравнении бензинового двигателя с дизельным — каждый имеет собственные преимущества и недостатки.  
 
Продолжая начатый в предыдущем номере («АБС-авто», декабрь 1998 г.) разговор об автомобилях с дизельными двигателями, остановимся сегодня на их типичных неисправностях. 
 
Практика показывает, что не только механик, но и сам владелец дизельного автомобиля должен хорошо представлять себе особенности его эксплуатации и ремонта, чтобы избежать траты времени, нервов и, главное, немалых денег. Попробуем разобраться, какие бывают неисправности у дизелей, от чего они возникают и как с ними бороться. 
 
Приобретая дизельный автомобиль, многие обращают внимание только на низкий расход недорогого топлива, забывая об объективно больших затратах на эксплуатацию и ремонт, хотя к этому надо быть готовым. 
 
Возможные неисправности двигателей можно разбить на следующие группы по причинам возникновения: конструктивно-производственные недостатки или особенности двигателя; неквалифицированное обслуживание и неграмотная эксплуатация; низкое качество дизельного топлива; «естественный» износ двигателя и топливоподающей аппаратуры; низкое качество ремонта и запасных частей. 
 
Рассмотрим наиболее распространенные модели дизельных двигателей именно с точки зрения перечисленных проблем. 
 
Конструктивно-производственные факторы 
 
Сразу оговоримся, что все дизельные двигатели достаточно надежны, а недостатки, связанные с их конструкцией или технологией производства, проявляются, как правило, в тяжелых условиях эксплуатации и при пробегах, превышающих назначенный заводом ресурс или близких к нему. И никак иначе, в противном случае избалованные хорошей техникой и сервисом зарубежные потребители разорили бы заводы-изготовители судебными исками. А вот попадая в Россию, дизельные иномарки как раз и сталкиваются с тяжелыми условиями эксплуатации и, имея, как правило, очень приличный пробег, охотно проявляют все конструктивные недоработки. 
 
Двигатели фирмы VW, к примеру, имеют головку блока цилиндров, в которой часто обнаруживается целый ряд дефектов. Так, в ней нередко образуются трещины. Завод-изготовитель даже допускает эксплуатацию с межседельными трещинами шириной до 0,5 мм. 
 
Помимо этого, нередки случаи выпадения форкамер, приводящие к повреждениям двигателя. А это уже требует серьезного ремонта. Ко всему прочему, приливы под крепление форкамер откровенно слабые, и при неаккуратном снятии или установке форсунок сразу ломаются. 
 
Конструктивное исполнение редукционного клапана маслонасоса двигателей VW неудачно, и нередки случаи его заклинивания с последующим «раздуванием» и разрушением масляного фильтра и полной потерей смазки при холодном пуске, особенно в условиях низких температур. Сказанное, правда, не относится к насосам шестицилиндровых двигателей D24, у которых применяются шестерни с внутренним зацеплением, и другая конструкция редукционного клапана. 
 
На двигателях объемом 1,6 и 1,9 л неудачно выполнена посадка шкива зубчатого ремня на переднем носке коленвала. При малейшем нарушении посадочной плоскости торца шкива начинается его биение, а к нему еще крепятся довольно тяжелые шкивы навесных агрегатов. Это всегда оканчивается ослаблением посадки и обрывом ремня. 
 
Справедливости ради следует заметить, что повреждение торца возникает при неаккуратном проведении ремонтных работ или нарушении требований по затяжке центрального болта, ставить который необходимо на клей-герметик Loctite. 
 
Двигатели Mercedes подобных конструктивных недостатков не имеют, подтверждая своей надежностью и ресурсом высокую репутацию фирмы. Однако можно считать явно неудачным решением использование роторно-распределительных насосов Lucas на двигателях объемом 2,2 и 2,9 л (модели ОМ 604, ОМ 602.982) на автомобилях C и E классов. Отказы этих насосов нередки, но не столь критичны, и, как правило, даже позволяют доехать до сервисной службы. Рядные насосы Bosch при износе плунжерных пар и кулачкового вала дают увеличение неравномерности подачи и характерный «тракторный» звук на холостых оборотах. 
 
Двигатели автомобилей Opel откровенно слабых мест не имеют, однако модели объемом 1,6 и 1,7 л очень чувствительны к снижению давления масла и уменьшению его подачи к подшипникам распредвала и рокерам. Именно поэтому при больших пробегах для двигателей Opel характерны износы кулачков распредвала и рокеров. Ломающиеся рокеры этих двигателей практически никогда не защищают от повреждений клапаны и направляющие втулки, и в случае обрыва ремня всегда приходится менять 2-3 клапана и столько же направляющих. 
 
В двигателях объемом 2,3 л не очень надежен цепной привод механизма газораспределения, а вертикально расположенный ТНВД чувствителен к негерметичности топливопроводов. 
 
Слабым местом двигателей BMW (2,4 и 2,5 л) является топливный насос высокого давления с электронным управлением и электрооборудование системы управления двигателем. Самый распространенный дефект этих ТНВД — быстрый износ плунжерной пары, проявляющийся в затрудненном горячем запуске, хотя это, видимо, чисто российская проблема, связанная с низким качеством дизтоплива. Очень часто встречаются обрывы электропроводки и нарушение контактов. А износ токосъемных дорожек управляющего электромеханизма ТНВД приводит к колебаниям оборотов холостого хода. 
 
В то же время сам силовой агрегат надежен, обладает хорошей ремонтопригодностью, но предъявляет высокие требования к качеству моторного масла. 
 
Дизели Ford объемом 2,5 л, устанавливаемые на микроавтобусы, зарекомендовали себя как надежные и экономичные силовые агрегаты. Однако система их предпускового подогрева с помощью электрофакельного устройства очень капризна и ненадежна. То же самое относится и к системе рециркуляции отработавших газов. 
 
Двигатели Ford объемом 1,8 л тоже в целом очень неплохи, но главным их недостатком является практически неизбежное разрушение одной или нескольких крышек распредвалов при обрыве ремня ГРМ, после чего требуется замена головки блока. 
 
Современные дизели французского производства требуют очень квалифицированного обслуживания и ремонта. Главный их недостаток трудно отнести к конструктивным — это высокая цена запасных частей, особенно для дизелей Renault. 
 
Итальянские дизели Fiat просты по конструкции, имеют неплохой ресурс, но чувствительны к регулировкам топливной аппаратуры, практически всегда отвечая на их нарушение повышенным износом и вибрацией. То же относятся к дизелям Alfa-Romeo, которые, правда, отличаются более сложной конструкцией. Особенно это характерно для двигателей объемом 2,5 л, имеющих так называемый «туннельный» картер. 
 
У японских дизельных моторов высокий ресурс, они грамотно спроектированы, хотя иногда показывают более низкие запасы прочности кривошипно-шатунного механизма по сравнению с европейцами. Являясь достаточными для обычной эксплуатации, в случае аварийных повреждений их запасы прочности становятся критическими. Например, после разрушения шатунного подшипника валы перед перешлифовкой обязательно должны проверяться на отсутствие трещин, особенно это касается двигателей Isuzu. Другим недостатком, по нашему мнению, являются длинные металлические трубки «обраток», которые, хотя и упрощают конструкцию форсунок, но часто ломаются или заминаются при техническом обслуживании. В последнем варианте резко снижается проходное сечение и возникают проблемы с топливоподачей. 
 
Двигатели Mitsubishi объемом 1,8, 2,3 и 2,5 л имеют балансирные валы, вращающиеся с удвоенной частотой для снижения сил инерции второго порядка. А это требует очень квалифицированного ремонта и серьезного станочного оборудования. 
 
Корейские дизели ведут свое происхождение от японских, поэтому к ним в полной мере относится все вышесказанное. 
 
Американские дизели можно охарактеризовать очень коротко: механика этих восьмицилиндровых монстров надежна, топливная аппаратура, как правило, фирмы Stanadune выполнена на хорошем уровне. Однако на современных двигателях стали устанавливать электронное управление топливоподачей, надежность которого не слишком высока. Резюме таково — если вы решили приобрести американский дизельный джип или мини-вэн — готовьтесь к проблемам с ремонтом, непредвиденным расходам и ожиданию запасных частей. 
 
Неквалифицированное обслуживание и неграмотная эксплуатация 
 
Первая и самая главная причина всех бед — невыполнение регламента эксплуатации. Масло рекомендуется менять через 7500 км вне зависимости от того, какая периодичность указана в инструкции. Это обусловлено повышенным содержанием серы в российском дизтопливе, что приводит к быстрому окислению масла. Качество применяемых масел должно соответствовать требованиям инструкции. Никаких промывок системы смазки при выполнении этих условий не требуется. 
 
Зубчатый ремень привода ГРМ и ТНВД надо менять не реже, чем через 60 тыс. км при условии отсутствия на нем масла. Если масло все же попало на ремень, течь надо немедленно устранить. Необходимо также внимательно следить за топливной системой, например, периодически сливать отстой из топливного фильтра, отворачивая сливную гайку. Топливный бак рекомендуется промывать два раза в год, весной и осенью, полностью его снимая. В актуальности такой процедуры каждый может убедиться самостоятельно, увидев, сколько грязи выльется из бака. 
 
Другая причина, приводящая к повреждениям дизеля, — это попытка запустить его во что бы то ни стало в случаях, когда он запуститься не может. Так, если в баке летняя солярка, а на улице -10°С , попытка пуска бессмысленна: при -5°С уже выпадают парафины и топливо теряет текучесть. Детали топливной аппаратуры, как известно, смазываются топливом, и его отсутствие приводит к сухому трению и их повреждению. 
 
Так что единственный путь в этом случае — искать теплый гараж и отогревать топливную систему. А пускать дизель с буксира вообще не рекомендуется, особенно если ГРМ приводится ремнем. Исправный дизель заводится без дополнительных средств подогрева до -20°С. Если этого не происходит, проще найти и устранить неисправность, чем доводить мотор до капитального ремонта. 
 
Не стоит также разбавлять солярку бензином без крайней на то необходимости — износы топливной аппаратуры из-за ухудшения смазки и самого двигателя из-за нарушения процесса сгорания резко возрастают. 
 
Эксплуатируя дизельный автомобиль, важно помнить, что его двигатель не любит высоких оборотов. Длительные поездки на максимальной скорости — еще один способ приблизить капремонт. И в заключение стоит сказать о том, что прогревать дизельный двигатель крайне необходимо. Конечно, не до рабочей температуры, но хотя бы 3-5 минут. 
 
Качество дизельного топлива 
 
По статистике примерно 50% неисправностей и поломок топливной аппаратуры вызываются качеством топлива. Причем не высоким содержанием серы и отклонением по цетановому числу. Это еще можно было бы пережить, так как негативные последствия растянуты во времени. А вот элементарное наличие воды и механических примесей в топливе губительны. Причем заправка импортным топливом, которое в 3 раза дороже, не спасает, но зато сведет на нет все экономические преимущества дизеля. Солярка там может быть и финская, но емкости для нее все равно не моются. И эффективного спасения от этой чисто российской беды пока не найдено. 
 
Некоторые, правда, советуют отстаивать солярку в бочке. Это, конечно, довольно эффективно, но у многих ли есть такая возможность? Хочется отметить, что только рядные насосы двигателей Mercedes в состоянии без видимых последствий переваривать ту дрянь, которой нас заправляют. 
 
«Естественный» износ 
 
Износ двигателя и деталей топливной аппаратуры после большого пробега в ряду неисправностей занимает далеко не последнее место. Основная проблема связана обычно со снижением компрессии из-за износа поршневой группы. В этом случае двигатель плохо запускается в холодную погоду даже при полностью исправных свечах накаливания и зимнем топливе. При этом он легко заводится с буксира и, будучи прогретым, не доставляет проблем с запуском. Для справки отметим, что нижняя граница компрессии у большинства двигателей составляет 20-26 бар. 
 
Другими важными признаками износа двигателя являются повышенные расход масла и давление картерных газов (более 10 мм вод. ст). Регулировками тут уже не помочь и альтернативы капремонту в этом случае нет. 
 
Износ распылителей форсунок приводит к появлению черного дыма на выхлопе и увеличению расхода топлива. Иногда распылитель «закусывает» и издает характерный стук, сопровождающийся появлением едкого белого дыма. При нормальной эксплуатации ресурс распылителей обычно составляет 60-80 тыс. км. 
 
Длительная эксплуатация двигателя с неисправными распылителями форсунок обычно приводит к прогару форкамер и далее поршней. Часто встречаются и износы плунжерных пар ТНВД, обычно сопровождающиеся затруднением запуска горячего двигателя. 
 
Последствия некачественного ремонта 
 
Ремонт дизеля требует хорошего знания особенностей конструкции ремонтируемого мотора и добросовестного выполнения инструкции по ремонту, а также качественных запчастей. Попытки отремонтировать подешевле у «гаражных» мастеров с использованием запасных частей неизвестного происхождения чаще всего приводят к потерянным деньгам, а то и к загубленному двигателю. 
 
Рассмотрим некоторые типовые ошибки при ремонте дизелей. 
 
При обрыве ремня ГРМ бессмысленно пытаться установить новый без снятия и ремонта головки блока , т. к. клапаны «встречаются» с поршнями на любом дизеле. При этом хотя бы 2-3 клапана потребуют замены. Исключения немногочисленны: только у двигателей Renault 2,1 и Ford 2,5 л при ударе поршней по клапанам ломающиеся рокеры и деформированные штанги привода клапанов достаточно надежно предохраняют клапаны от повреждений. 
 
В случае ослабления посадки вихревых камер в головках блока двигателей VW, Peugeot, BMW пытаться закернить их бессмысленно — они все равно выпадают. Надо менять головку блока. 
 
Установка головки на блок двигателей VW без центрирующих втулок недопустима — перекос головки с последующим прогаром прокладки почти неизбежен. 
 
Попытка отделаться заменой поршневых колец при износе цилиндров свыше 0,1 мм бессмысленна — новые кольца пройдут не более 10 тыс. км, а обычно еще меньше. Столь же бесполезна установка новых номинальных поршней без расточки блока цилиндров. Единственно верное решение — расточить блок под ремонтный размер. Замена колец обычно требуется только в случае сильного перегрева двигателя и потери ими упругости. 
 
В случае разрушения шатунного вкладыша или его проворачивания (это сопровождается перегревом нижней головки шатуна) шатун требует обязательного ремонта или замены, иначе двигатель опять «застучит» на первой же тысяче километров. 
 
Ремонт топливной аппаратуры «на коленке» невозможен. Для сколько-нибудь успешного ремонта ТНВД нужны стенды, спецприспособления, технологические карты и механики, знающие особенности ремонта насосов данной модели. При невыполнении этих условий насос будет скорее всего загублен безвозвратно. 
 
Правильно отремонтированный и собранный двигатель заводится без особых проблем стартером. Если мотор не заводится, необходимо искать причину, а не таскать автомобиль на веревке многие километры. Буксир — вернейший способ угробить только что собранный двигатель. 
 
И в заключение обращаем ваше внимание на таблицу основных неисправностей дизельных двигателей и причин, их вызывающих. Надеемся, она поможет и автовладельцам, и механикам, которые имеют дело с дизельными двигателями. 
 
В предыдущих номерах журнала (см. «АБС-авто», декабрь 1998 г., январь 1999 г.) мы рассмотрели общие особенности конструкции, эксплуатации и ремонта наиболее распространенных дизельных моторов. Но каждая марка или модель, очевидно, имеет свои, присущие только ей черты «характера», часто определяющие технологию обслуживания и ремонта. Поэтому мы сочли целесообразным подробно остановиться на дизелях каждой из популярных в России марок автомобилей. Безусловным лидером в популярности являются сейчас автомобили VW (Фольксваген), с их двигателей мы и решили начать более конкретное знакомство. 
 
Концерн стал устанавливать дизельные двигатели на легковые автомобили сравнительно давно — со второй половины 70-х годов. С 79-го года дизели VW стала устанавливать на свои автомобили 2,7,8,9-й серий шведская фирма Volvo. Все дизели выпуска до начала 90-х годов отличают широкая унификация, простота конструкции и эксплуатации, что позволяет осуществлять большой спектр ремонтных работ в неспециализированных мастерских. 
 
Условно моторы VW можно разделить на четыре основные группы: четырехцилиндровые вихрекамерные объемом 1.5, 1.6, 1.7, 1.9 л, атмосферные и с турбонаддувом; пятицилиндровые вихрекамерные объемом 2.0, 2.4 л в основном атмосферные (только один из них с турбонаддувом); шестицилиндровые вихрекамерные объемом 2.4 л атмосферные и с турбонаддувом; пятицилиндровые последнего поколения с непосредственным впрыском, турбонаддувом, окислительным нейтрализатором, рециркуляцией ОГ и электронным управлением ТНВД. 
 
Двигатели первой группы являются наиболее распространенными и устанавливаются на автомобили VW Golf, Passat, Audi 80, Seat, Skoda. 
 
После пробега 150-200 тыс. км дизели VW обычно требуют достаточно серьезного ремонта с расточкой блока цилиндров, хотя известны случаи межремонтных пробегов до 400 тыс. км при аккуратной эксплуатации. При меньших пробегах часто встречающейся неисправностью является обрыв зубчатого ремня ГРМ, однозначно приводящий к повреждению клапанов и требующий ремонта головки блока цилиндров. Это происходит, как правило, из-за нарушения сроков замены ремня (60 тыс. км), заклинивания вала ТНВД от попадания воды и грязи в топливо, повреждения или заклинивания ролика натяжителя ремня ГРМ, ослабления посадки зубчатого шкива на коленвалу либо повреждения его шпоночного паза. 
 
Замену ремня ГРМ рекомендуется производить вместе с заменой ролика натяжителя, ресурс которого сопоставим с ресурсом ремня. Следует помнить, что попадание масла на ремень ГРМ резко снижает срок его службы. 
 
При установке нового ремня необходимо знать, что выставить его по меткам на двигателях VW невозможно (!), так как существует только одна метка — ВМТ (ОТ). 
 
Шестерня привода распредвала имеет произвольную бесшпоночную конусную посадку на распредвалу и окончательно затягивается после установки приспособления 2065А в торец распредвала и приспособления 2064 в отверстии шестерни ТНВД при положении первого цилиндра в ВМТ. 
 
Контроль натяжения ремня после установки желательно производить с помощью спецприспособления VW 210. 
 
После установки ремня регулируется угол опережения впрыска с помощью индикатора приспособления 2066(рис. «в»). Нужное значение момента начала подачи устанавливается поворотом ТНВД. Мы понимаем, что перечисление номеров приспособлений звучит не очень красиво, но по-иному тут нельзя. Если не использовать набор этих несложных устройств, то невозможно точно установить момент начала подачи и обеспечить оптимальные тяговые и экономические характеристики автомобиля. 
 
При ремонте головки блока цилиндров после обрыва ремня рекомендуется заменять весь комплект клапанов, так как нередко деформации их стержней после касания поршней остаются вроде бы незначительными, но на высоких оборотах такой клапан «подкусывает» в направляющей втулке и получает удар поршнем уже со всеми вытекающими отсюда последствиями. 
 
Признаками приближающегося капремонта являются затрудненный холодный пуск и возросший расход масла (более 1 л на 1000 км). В этом случае следует замерить компрессию на холодном двигателе, которая должна быть не ниже 25 атм у вихрекамерных дизелей VW и не ниже 19-20 атм у дизелей с непосредственным впрыском (при разбросе не более 5 атм в разных цилиндрах). 
 
Исправный двигатель может плохо заводиться и неустойчиво работать на прогреве из-за неисправностей системы предпускового подогрева. Тогда следует проверить наличие напряжения на свечах, и, если оно есть, отсоединить общую шину, прозвонить тестером каждую свечу по отдельности. Перегоревшие свечи обычно имеют обрыв. Если свеча имеет оплавленный электрод, то причиной этого является неисправная форсунка. 
 
Когда на свечи не подается напряжение, то нужно проверить реле управления свечами и цепи его питания. Часто оказывается перегоревшей плавкая вставка — предохранитель свечей на 50 А. 
 
Топливная аппаратура четырехцилиндровых двигателей достаточно проста в эксплуатации и регулировках, но все же требует для обслуживания специальных приборов и стендов. 
 
При снятии и замене форсунки необходимо каждый раз устанавливать новые теплоизолирующие шайбы между форсунками и головкой цилиндров. Если этого не сделать, то распылитель быстро выйдет из строя от перегрева. 
 
Неисправный распылитель обычно издает характерный стук на работающем моторе, хотя возможны и другие проявления неисправности. Так, в случае естественного износа игл распылителей снижается давление открытия форсунок. Становится нечеткой отсечка при завершении впрыска, что проявляется черным дымом на «прогазовках» и под нагрузкой при одновременном росте расхода топлива. Менять в этом случае рекомендуется весь комплект распылителей, обязательно регулируя на стенде заданное давление открытия. 
 
На двигателях выпуска после 1986 г. выполнен подогрев топливного фильтра с помощью трубопровода «обратки», проходящего через фильтр. Через пластмассовый штуцер крепления этого трубопровода нередко возникает подсос воздуха, сопровождающийся появлением резких стуков и едкого сизого дыма. Обнаружить подсос воздуха поможет прозрачный топливопровод от фильтра к входному штуцеру ТНВД. 
 
Насосы высокого давления на четырехцилиндровых моторах устанавливались типа VE фирмы Bosch и крайне редко CAV Lucas. На ТНВД этого типа часто наблюдается выход из строя насоса низкого давления (подкачивающего). При этом двигатель самопроизвольно глохнет, не развивает полной мощности, обороты плавают. Этот дефект обычно связан с попаданием воды и грязи в топливо, что вызывает износ деталей или их коррозию в случае длительной стоянки автомобиля. 
 
Другая распространенная неисправность — износ кулачковой шайбы и роликов. Признаками этого являются самопроизвольное изменение момента начала подачи топлива и появление мелкой металлической пыли в насосе, — ее хорошо видно, если снять отсечной клапан. Ремонт насоса при этих неисправностях возможен только в условиях специализированной мастерской. 
 
При обычной эксплуатации иногда требуется регулировка оборотов холостого хода и режима увеличения числа оборотов холодного запуска. При отсутствии стенда для проверки ТНВД возможна также грубая регулировка величины подачи с помощью дымомера в режиме измерения пикового значения дымности. В этом случае двигатель регулируется по границе дымности, почти совпадающей на вихрекамерных моторах с их внешней характеристикой (по максимальному крутящему моменту). Кстати, во всех случаях ремонта топливной аппаратуры из-за попадания воды следует сменить топливный фильтр и тщательно промыть бак. 
 
Пятицилиндровые вихрекамерные дизели серии CN, DE, NC объемом 2.0 л устанавливались только на автомобили Audi-100 до 1990 г.; двигатели AAS и AAB объемом 2.4 л по конструкции практически идентичны, но первый ставился на Audi-100 91-94 гг., а второй — на VW Т4. Многие детали дизелей 2.0 л унифицированы с деталями дизелей семейства 1.6 л, а дизелей 2.4 л — с деталями моторов 1Х и 1Y объемом 1.9 л. 
 
Для привода ГРМ и ТНВД у рассматриваемых моторов применяются раздельные ремни. 
 
Периодичность замены ремня ГРМ такая же, как у четырехцилиндровых двигателей — 60 тыс. км. При этом следует обращать внимание на состояние подшипников водяного насоса, а при малейшем сомнении водяной насос нужно менять. То же относится и к промежуточному ролику. 
 
Установка ремня производится при снятой шестерне привода ТНВД с помощью приспособления 2065А и затруднений обычно не вызывает. Шестерню привода распредвала, имеющую коническую посадку, следует сперва ослабить, а затем, после установки фаз, зафиксировать в новом положении. Окончательно натяжение ремня следует проверить приспособлением VW210. 
 
При установке ремня ТНВД используется приспособление 2064. Натяжение регулируется перемещением крепежной плиты ТНВД вверх или вниз. После установки ремня производится окончательная регулировка начала подачи с помощью индикаторного приспособления 2066. 
 
Топливная аппаратура пятицилиндровых двигателей производства Bosch не имеет принципиальных отличий от аппаратуры четырехцилиндровых, и ей свойственны те же самые дефекты. Кроме того, нужно отметить, что у насосов двигателей ААВ на Т4 нагружение рычага управления таково, что у него чаще других возникает течь топлива из-под штока рычага вследствие износа резинового уплотнительного кольца и втулки. Как показывает практика, менять только кольцо, не меняя втулки, бесполезно, так как течь возобновится очень быстро. В некоторых случаях приходится менять даже рычаг, имеющий односторонний износ. 
 
Шестицилиндровые двигатели объемом 2.4 л серий D24, DV, DW (атмосферные и с турбонаддувом) применяются на грузовых LT 28, 35 и легковых Volvo. Они идентичны по конструкции, но имеют некоторую разницу, связанную с наличием или отсутствием наддува, компоновочными соображениями и годами выпуска. В то же время некоторые детали, несмотря на внешнее сходство, невзаимозаменяемы, поэтому надо быть внимательным при покупке запчастей, особенно бывших в употреблении. 
 
Привод газораспределительного механизма и ТНВД у двигателей этой серии такой же, как у пятицилиндровых. К срокам замены ремня ГРМ тут надо относиться особенно пунктуально, так как при его обрыве, помимо повреждения клапанов, почти всегда ломается распределительный вал и довольно часто — одна из его крышек крепления, что автоматически влечет за собой сложный ремонт постелей распредвала в головке блока или даже ее . Но в целом шестицилиндровые двигатели VW можно отнести к наиболее надежным и долговечным из дизельных моторов этой фирмы. Их фактический межремонтный ресурс редко бывает меньше 250 тыс. км. 
 
С 1991 года на автомобили Audi-100 стали устанавливать пятицилиндровые турбодизели с непосредственным впрыском топлива АВР и ААТ объемом 2.5 л, а на Audi-80 — четырехцилиндровые 1Z объемом 1.9 л. С 1993 г. двигатель 1Z появился и на автомобилях VW Golf, Vento, Passat. В дальнейшем эти моторы были модифицированы и получили индексы AEL (2.5 л) и AHU (1.9 л). С 1995 г. появилась безнаддувная версия мотора 1.9 л — AEY, а двигатель 2.5 л с индексом D5252T стал с 1996 г. ставиться на Volvo 850 (S70). 
 
Двигатели этой группы являются непревзойденными лидерами в своем классе по топливной экономичности и обладают отменными тяговыми характеристиками. По конструкции силового агрегата они — прямые потомки четырех- и пятицилиндровых вихрекамерных моторов VW с учетом, естественно, серьезных различий в конструкции поршней и головок блоков. Наибольшее отличие у них в системе впрыска и управления двигателем. Эти моторы имеют ТНВД с электронным управлением, то есть полностью отсутствует механическая связь между педалью газа и двигателем. Сигналы, формирующие количество подачи и момент начала впрыска, рассчитываются микропроцессором по сигналам датчиков оборотов, температуры, давления наддува, положения педали газа и других. 
 
Форсунки тоже отличаются по конструкции: на вихрекамерных моторах они со штифтовым распылителем, а на новых двигателях — многоструйные. Распылители этих форсунок не поставляются в запасные части, и в случае неисправности форсунка заменяется целиком. Это дорого, и утешает только то, что менять их приходится гораздо реже, чем на вихрекамерных моторах. Система управления двигателем достаточно надежна, отказы электроники редки и чаще всего связаны с окислением контактов в разъемах. Механическая часть электронного ТНВД страдает по-прежнему от попадания воды и грязи, хотя какие тут могут быть претензии к производителю? 
 
Диагностика двигателя и топливной аппаратуры, в отличие от моторов предыдущего поколения, невозможна в условиях неспециализированной мастерской, не имеющей сканера для считывания кодов неисправностей (VAG1551) и электронной приставки Bosch для регулировки ТНВД на стенде. 
 
Замена ремня ГРМ на этих моторах проводится с той же периодичностью, как и на других моторах VW — через 60 тыс. км. Технология замены аналогична рассмотренной ранее. Единственное отличие в том, что на пятицилиндровых двигателях натяжение ремня осуществляется роликом, а не помпой, что упрощает замену. 
 
И в заключение следует отметить некоторые общие правила, которые необходимо соблюдать при проведении капитального и среднего ремонта двигателей VW: 
 
— прокладки головки блока поставляются в запасные части трех толщин. Толщина прокладки определяется по выступанию поршней в положении ВМТ над плоскостью блока цилиндров. Если нет прокладки нужной толщины, можно смело ставить более толстую. Замена же на более тонкую, чем полагается, недопустима; 
 
— шлифовка или фрезеровка плоскости блока на дизельных двигателях VW не допускается; 
 
— у дизелей VW на блоке отсутствуют центрирующие втулки, поэтому для правильной установки прокладки и головки следует пользоваться ложными втулками 3070, иначе неизбежен перекос головки; 
 
— в головке блока цилиндров допускаются трещины между седлами клапанов, но шириной не более 0,5 мм; 
 
— предельно допустимый износ блока цилиндров для всех моторов — 0,10 мм, предельная эллипсность и конусность — 0,05 мм. Если износ превышает указанные значения — расточка блока обязательна; 
 
— при проведении капитального ремонта двигателей VW рекомендуется производить замену маслонасоса. Особенно это касается четырехцилиндровых двигателей; 
 
— втулки промежуточного вала четырехцилиндровых двигателей требуют обязательного контроля, а при их замене необходимо проверять размеры посадочных мест; 
 
— на четырехцилиндровых моторах нередки случаи сползания ремня ГРМ из-за износа опорных втулок вала ТНВД. Помимо естественного износа это вызывается работой двигателя с перетянутым ремнем. 
 
Рассмотрев особенности эксплуатации и ремонта диельных моторов VW (см. «АБС-авто», 1999, № 2), перейдем теперь к хорошо известным у нас дизелям знаменитой фирмы Mercedes-Benz. 
 
Фирма Mercedes-Benz является пионером применения дизельного мотора на легковом автомобиле. В 1935 году появилось на свет такси Mercedes 260 (кузов W170) c дизелем первого поколения ОМ636 мощностью 43 л. с. С той поры прошло много лет, но и по сей день дизели Merсedes остаются синонимом надежности и долговечности. Эти моторы отличаются консервативной, доведенной до совершенства конструкцией, большим запасом прочности и отличными конструкционными материалами, хотя они несколько уступают двигателям других фирм по удельному весу, экономичности, мощности. 
 
Второе поколение легковых дизелей ОМ621 объемом 2.0 л появилось в 1961 году и в 1968 году было заменено двигателями нового семейства ОМ615 объемом 2.0 и 2.2 л. Рассматривать конструкцию и эксплуатацию «мерседесовских» дизелей имеет смысл именно с этого поколения моторов, так как предыдущие почти неизвестны в нашей стране и представляют интерес в основном для любителей автостарины. 
 
С моторами ОМ615 и его модификациями по нашим дорогам ездят тысячи легковых и грузовых автомобилей. Эта серия выпускается и поныне (правда, уже не в Германии) и имеет следующие модификации: ОМ615 (2.0 л и 2.2 л) — устанавливались на легковые «мерседесы» W115, W123; ОМ616 (2.4 л) — на легковые W115, W123, грузовики 207D, 307D, 407D и их модификации; пятицилиндровые ОМ617 (3.0 л) — на легковые W115, W123, грузовики 209D, 409D, а ОМ617 с турбонаддувом — на W123, W126. 
 
Все эти моторы практически идентичны, но различаются диаметром цилиндров и ходом поршня. По конструктивной схеме предкамерные, верхневальные с регулируемым зазором клапанов и приводом клапанов рычагами. Привод распредвала и ТНВД осуществляется двухрядной цепью с гидронатяжителем. Следует отметить, что цепной привод применяется на всех без исключения двигателях Merсedes, ведь надежность для них превыше всего. Топливные насосы высокого давления применяются только Bosch рядные, моделей М, MW и M/RSF. Насосы типа М с вакуумным регулятором оборотов имеют индивидуальную систему смазки, требующую периодического обслуживания (через 15 тыс. км), все остальные смазываются маслом от двигателя. 
 
Свечи накаливания до 1980 года применялись спиральные, последовательного соединения, а с 09.1980 — стержневые быстрого накала и с параллельным соединением. При сгорании хотя бы одной спиральной свечи в системе возникает обрыв цепи, и она перестает работать, о чем свидетельствует отсутствие индикации на приборной панели. 
 
При сгорании стержневой свечи цепь не нарушается, и остальные свечи действуют. Индикация в этом случае работает следующим образом: при повороте ключа зажигания желтая спираль не загорается, а зажигается после запуска, горит 15-20 сек и затем гаснет. 
 
Предкамеры на этих моторах бывают двух типов — с плоским и со сферическим днищем. Моторы со сферической предкамерой имеют другую форму днища поршня, причем оптимизация рабочего процесса позволила получить 10%-ное повышение мощности и снижение шума по сравнению с плоской предкамерой. 
 
В целом моторы этого поколения исключительно надежны и не имеют явно выраженных недостатков, не считая разве больших габаритов и веса, а также сальниковой набивки на заднем конце коленвала, имеющей ограниченный срок жизни. 
 
Ресурс двигателей данной серии превышает 400 тыс. км, и даже известны случаи пробега 800 тыс. км без серьезного ремонта. Да и в ремонт они обычно приходят не из-за аварийных повреждений, а не с естественным износом цилиндропоршневой группы. При этом в большинстве случаев коленчатый вал оказывается в идеальном состоянии и не требует даже перешлифовки (за исключением случаев масляного голодания). 
 
Следует, однако, помнить о том, что ресурс цепи и ее успокоителей редко превышает 200 тыс. км, поэтому ее нужно своевременно менять, обращая внимание и на состояние звездочек. 
 
Топливные насосы также очень надежны и редко выходят из строя по причине аварийных повреждений. Самые частые неисправности — выход из строя подкачивающей помпы из-за износа уплотнений (крепится сбоку на ТНВД) и разрыв мембраны привода рейки на насосах М с вакуумным управлением. 
 
Проведение этого ремонта не требует стендовой регулировки ТНВД. Угол опережения впрыска устанавливается либо статическим методом по трубопроводу слива, либо динамическим с подключением стробоскопа или мотортестера. 
 
В 1983 году на смену этому поколению дизельных моторов пришла серия ОМ601, 602, 603, объемом 2.0, 2.5, 3.0 л соответственно. Их главные особенности — гидравлические толкатели в приводе клапанов, алюминиевая головка блока цилиндров, насос высокого давления с автоматической прокачкой для удаления воздуха. Эти моторы более высокооборотны, отличаются меньшей шумностью, большей литровой мощностью и экономичностью. 
 
В то же время они требуют существенно более квалифицированного обслуживания. На двигателях нередки отказы гидротолкателей из-за ухудшения условий смазки, сопровождающегося характерным стуком клапанов. 
 
Несвоевременная замена цепи и успокоителей может привести к ее обрыву, что очень часто полностью выводит из строя головку блока (на двигателях предыдущей серии обычно ломало распредвал, но головка оставалась целой). Поэтому механизм газораспределения надо периодически проверять. 
 
Блок цилиндров обладает прекрасной износостойкостью и обеспечивает двигателям ресурс 350-500 тыс. км в зависимости от объема (большая цифра относится к шестицилиндровым). Гильзы цилиндров до 1989 года вставные сухие, после 1989 — моноблок. При ремонте следует контролировать верхнюю плоскость блока (допуск в продольном направлении — 0,10мм; — в поперечном направлении — 0,05мм), так как нарушения плоскости встречаются примерно у 15-20% моторов с пробегом более 400 тыс. км. 
 
В блоке для улучшения охлаждения в зоне прокладки головки выполнены очень узкие продольные пазы между цилиндрами. Они часто забиваются настолько, что ухудшается охлаждение и возникают прогары прокладки. По-этому недопустимо пренебрегать требованиями инструкции по применению охлаждающей жидкости и тем более — использовать воду. 
 
Частым дефектом является появление течи масла из-под крышки вакуумного насоса усилителя тормозов и управления двигателем (на моторах старого типа этот дефект встречался реже). 
 
Навесные агрегаты приводятся одним многоручьевым ремнем, у которого довольно часто выходит из строя подшипник натяжного ролика. Внешне дефект сразу заметен по перекошенному положению ролика, сопровождается нестабильным стуком, иногда угрожающей тональности. 
 
Топливная аппаратура этих двигателей с рядными насосами Bosch типа М/RSF еще надежнее, чем на двигателях предыдущих серий, и в эксплуатации отказы ее крайне редки. Неисправности обычно связаны с вакуумной системой управления ТНВД. Привод рейки механический, но выключение двигателя (перевод рейки в положение Stop) производится разряжением от вакуумного насоса, подаваемым через замок зажигания. Довольно часто выходит из строя мембрана вакуумного привода Stop, и двигатель не глушится ключом зажигания. 
 
Но такая система выключения двигателя все же повышает его надежность, так как даже полностью обесточенный двигатель Merсedes будет продолжать работать, в то время как любой другой автомобиль заглохнет, как только исчезнет напряжение на отсечном клапане ТНВД. 
 
С помощью вакуума также производится повышение оборотов холостого хода (на 
 
100 об/мин) на режиме прогрева холодного двигателя. Вакуум подводится к мембране ТНВД через термореле, закрывающееся при 17°С. На части моторов вакуумная камера отсутствует и применена система электронной стабилизации холостого хода. 
 
На двигателях 603.971 объемом 3.5 л (Mercedes G463, W140) применено электро-управление рейкой ТНВД по сигналам от электронного блока управления. 
 
Характерным недостатком всех этих насосов, раздражающим владельцев автомобилей с большим пробегом, является повышенная неравномерность цикловой подачи, вызывающая «тракторный» стук мотора на холостых оборотах из-за износа плунжеров и кулачкового вала. Кроме неприятных ощущений, особого вреда это не приносит. 
 
Турбонаддувные моторы этой серии очень чувствительны к вязкости и классу применяемого масла. Менять масло в них следует не реже, чем через 7500 км, так как оно очень интенсивно окисляется. 
 
С 1993 г. фирма Merсedes-Benz впервые в мире начала производство легковых дизельных моторов с четырьмя клапанами на цилиндр. Это моторы серии ОМ604, 605,606 объемом 2.2; 2.5; 3.0 л соответственно, устанавливаемые на автомобили C и E классов, а мотор ОМ606 с турбонаддувом — на S класс. 
 
Оптимизация рабочего процесса позволила существенно (на 10%) улучшить топливную экономичность и повысить литровую мощность (с 37 до 45 л. с./л) у атмосферных двигателей. 
 
Двигатели этой серии, так же как и предыдущей, максимально унифицированы между собой. С 1996 года они были дополнены пятицилиндровыми турбодизелями ОМ602.982 с непосредственным впрыском топлива мощностью 129 л. с. Этот двигатель имеет уникальные характеристики по экономичности (7,9 л/100 км в городском цикле для E класса), высокий крутящий момент на низких оборотах и довольно тихо работает, несмотря на прямой впрыск. 
 
На двигателях ОМ605, 606 применяются рядные ТНВД Bosch типа M/RSF с электронным управлением, а на двигателях ОМ604, ОМ602.982 — ТНВД Lucas EPIC распределительного типа с электронным управлением. 
 
Статистика по неисправностям этих моторов пока еще недостаточна, однако следует отметить, что ресурс цепи четырехклапанных моторов ниже, чем у моторов с одним распредвалом (были случаи, когда ее замена требовалась уже при пробеге 150 тыс. км). 
 
Двигатели снабжены системой рециркуляции отработавших газов и окислительным нейтрализатором. Нередко возникают сбои в работе системы рециркуляции, обычно вызываемые неисправностями управляющей электроники. К сожалению, диагностика системы управления этих моторов без специальных сканеров (ННТ, Bosch KTS 300, Laser 2000) невозможна. 
 
ТНВД Lucas EPIC более капризны, чем рядные Bosch, они очень чувствительны к подсосу воздуха в топливных магистралях, чему способствуют пластмассовые быстроразъемные штуцеры, появившиеся на этих моторах. 
 
В целом можно отметить, что с каждым новым поколением дизелей Merсedes растет их совершенство, но ухудшаются эксплуатационная надежность и ремонтопригодность. Хотя это заключение справедливо только для российских условий эксплуатации. Ведь там, где развита сервисная сеть, усложнение конструкции никакого значения для владельца не имеет, тем более, что в целом надежность дизельных «мерседесов» любых поколений может считаться эталонной.


Информация о работе Дизель на легковом автомобиле