Альтернативные источники энергии

Автор работы: Пользователь скрыл имя, 05 Марта 2014 в 15:55, курсовая работа

Краткое описание

Актуальность данной темы состоит в том, что проблема истощения природных ресурсов – это одна из глобальных проблем. В будущем необходимо разрабатывать технологии использования возобновляемых (альтернативных) источников энергии. Это такие как: энергия ветра, солнца, приливов-отливов, термоядерный синтез и энергия вакуума.
Острую тревогу вызывают запасы традиционных природных топлив (нефти, угля и др.), так как человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Однако, в настоящее время преобладающая часть минеральных ресурсов, обнаруженных близ поверхности земного шара, исчерпана. Потому остро встал вопрос, сколько времени человечество сможет продолжать свою традиционную практику потребления не возобновляемых ресурсов.

Вложенные файлы: 1 файл

типовые промышленные технологии курсовая.docx

— 50.80 Кб (Скачать файл)

ВВЕДЕНИЕ

  Актуальность данной темы состоит в том, что проблема истощения природных ресурсов – это одна из глобальных проблем. В будущем необходимо разрабатывать технологии использования возобновляемых (альтернативных) источников энергии. Это такие как: энергия ветра, солнца, приливов-отливов, термоядерный синтез и энергия вакуума.

Острую тревогу вызывают запасы традиционных природных топлив (нефти, угля и др.), так как человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Однако, в настоящее время преобладающая часть минеральных ресурсов, обнаруженных близ поверхности земного шара, исчерпана. Потому остро встал вопрос, сколько времени человечество сможет продолжать свою традиционную практику потребления не возобновляемых ресурсов.

  Учитывая рост потребления энергии во всем мире,  нынешних запасов нефти хватит примерно на 35-40 лет. Промышленные запасы угля только на действующих шахтах составляют в области 3,4 миллиарда тонн, чего при нынешних темпах добычи хватит более чем на 100 лет.

Современное промышленное общество расходует огромное количество энергии. Серьезные опасения вызывает проблема истощения и рационального использования ее запасов.

   Любое  развитие требует, прежде всего, энергетических затрат и при  существующих  формах  национальных экономик   многих   государств   можно   ожидать  возникновения серьезных  энергетических  проблем.  Более  того,  в  некоторых странах они уже существуют. Но в настоящее время существует проблемы получения энергии. Чтобы выходить из такой ситуации, необходимо находить альтернативные способы получения энергии.    Поиск и применение альтернативных источников энергии позволит решить ряд важных для России проблем. Это позволит экономить небезграничные запасы топлива, сократить растущее загрязнение окружающей среды, благотворно повлияет на энергетическую безопасность страны и даст энергетическую независимость отдельным ее районам.

В настоящее время разработаны и применяются различные способы использования нетрадиционных источников энергии.

 Это такие как: энергия  солнца, ветра, приливов-отливов и  так далее.

   Даже  если  энергетического кризиса удастся избежать, мир, рано или поздно, неизбежно столкнется с тем, что основные  виды традиционного топлива будут исчерпаны. Запасы нефти, газа, угля не бесконечны.   Чем   больше   мы   используем   эти   виды энергетического сырья, тем меньше их остается и  тем  дороже  с каждым днем они нам обходятся.

Цель работы: Подробно изучить альтернативные источники энергии.

      В соответствии  с целью были  поставлены и  решены следующие задачи:

Рассмотреть нетрадиционные источники электроэнергии

Изучить состояние вопроса на сегодняшний день.

Выявить способы производства альтернативной энергии

Дать оценку перспектив

Объектом исследования является альтернативные источники. 

Предметом исследования являются методы получения альтернативной энергии.

      В данной работе были использованы такие методы исследования, как:

     - Анализ и  синтез

     - Индукция и  дедукция

 

 

 

 

 

 

 

1. НЕТРАДИЦИОННЫЕ ИСТОЧНИКИ  ЭЛЕКТРОЭНЕРГИИ

1.1 Энергия ветра

  Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт•ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки.[6]

  Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними, должна занимать большую площадь. К тому же, ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.

Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль и насажанную на ось бочку; некое подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены между собой. Вертикальные конструкции хороши тем, что улавливают ветер любого направления.    Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. Поэтому ферма занимает много места. Такие фермы есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Чтобы снизить зависимость от непостоянного направления и силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и разного рода аккумуляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк нагнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электрогенератором) и гидравлические (силой ветра вода поднимается на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в баллонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того, как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. [5, С.216-219]

 

1.2 Энергия солнца

Почти все источники энергии, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию.  Всего за три дня солнце посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности.

Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая "ничтожная" величина в 1600 раз больше энергии, которую дают все остальные все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного небольшого озера, эквивалентна мощности крупной электростанции.

Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами, при помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит - за минуту.

Сегодня для преобразования солнечного излучения в электрическую энергию можно пойти двумя путями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал – для плавления веществ, дистилляции воды, нагрева, отопления и т. д.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода – плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (на 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки – фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу–это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000°С и выше.

Солнечная  энергетика  относится  к  наиболее  материалоемким   видам

производства  энергии.  Крупномасштабное  использование  солнечной   энергии влечет  за  собой  гигантское  увеличение  потребности   в   материалах,   а следовательно, и в трудовых  ресурсах  для  добычи  сырья,  его  обогащения, получения  материалов,   изготовление   гелиостатов,   коллекторов,   другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт  в год  электрической  энергии  с  помощью  солнечной  энергетики   потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной  энергетике  на органическом топливе этот показатель составляет 200-500 человеко-часов.

       Пока  еще  электрическая  энергия,   рожденная   солнечными   лучами,

обходится намного дороже, чем  получаемая  традиционными  способами.  Ученые надеются, что эксперименты, которые они проведут  на  опытных  установках  и станциях,  помогут  решить  не  только  технические,  но   и   экономические проблемы.  Но,  тем  не  менее,  станции-преобразователи  солнечной  энергии и строят и они работают.

По  мнению  специалистов,  наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. Коэффициент полезного действия (КПД) производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных условиях уже достигнут КПД 40,7 %. [9]

  Преобразование энергии в фотоэлектрические преобразователи основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

  Неоднородность структуры фотоэлектрических преобразователях может быть получена легированием одного и того же полупроводника различными примесями или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Легирование - добавление в состав материалов примесей для изменения (улучшения) физических и химических свойств основного материала. Возможны также различные комбинации перечисленных способов.

Информация о работе Альтернативные источники энергии