Автор работы: Пользователь скрыл имя, 12 Декабря 2013 в 14:12, реферат
Масса атмосферы составляет около 5,2×1015 т. Основная часть газового вещества (80%) заключена в тропосфере, верхняя граница которой расположена на высоте около 17 км на экваторе, к полюсам она снижается до 8 – 10 км. Верхняя граница тропосферы – тропопауза – намечает область сильного снижения температуры и отсутствия скопления паров воды. Тропосфера является областью активного взаимодействия с океаном и сущей, в ней сосредоточена основная масса паров воды и мелких твердых частиц, переносимых воздушными массами. В тропосфере происходят фотохимические реакции, имеющие важное значение для биосферы.
Химический состав атмосферы Земли
История формирования атмосферы служит ярким примером воздействия живого вещества на окружающую среду. Факты, полученные в последние годы, свидетельствуют, что состав современной газовой оболочки Земли является итогом длительного процесса, в котором ведущее значение имела геохимическая деятельность живых организмов.
Масса атмосферы составляет
около 5,2×1015 т. Основная часть газового
вещества (80%) заключена в тропосфере,
верхняя граница которой
Выше тропопаузы, в стратосфере и мезосфере, нарастает разреженность газов, сложно меняются термические условия. На высоте 25 – 30 км под воздействием солнечной радиации происходит Фотодиссоциация молекул кислорода и образуется озон. Молекулы озона сильно рассеяны. Если бы они находились в условиях, обычных для поверхности Земли, под давлением 1 атм (101325 Па), то мощность озонового слоя была бы менее 1 см. Очень разреженный слой озона поглощает 97% ультрафиолетовой части солнечной радиации. Без этого экрана существование жизни на поверхности суши было бы невозможно.
На удалении от 80 до 800 км от
поверхности Земли
Состав газовой оболочки Земли, как и состав Океана, в значительной мере обусловлен деятельностью живых организмов и поддерживается системой биогеохимических циклов. В настоящее время газовое вещество атмосферы на 99,9% состоит из азота, кислорода и аргона (табл. 1). Среди компонентов, содержащихся в малых количествах, можно выделить пары воды, инертные газы и соединения, обусловленные биологическими процессами и фотохимическими реакциями.
Большой интерес для реконструкции истории атмосферы представляет геохимия инертных газов. Относительно высокое содержание аргона связано с тем, что большая часть этого газа представлена изотопом 40Аг, образованным за счет распада радиоактивногол изотопа калия 40К. Количество гелия в атмосфере, наоборот, в 1000 раз меньше, чем должно быть. Это обусловлено непрерывной диссипацией этого элемента. Остальные инертные газы содержатся в том количестве, в каком они были выделены на протяжении всего времени существования Земли. Изучение соотношения изотопов ксенона привело геохимика Ю.А. Шуколюкова (1988) к заключению, что газовая оболочка возникла за очень короткий отрезок времени, который примерно совпадает со временем аккреции Земли. Предполагают, что быстрое образование атмосферы обусловлено энергичным выделением газов при ударах метеоритных тел на ранней стадии развития земной коры.
В составе первичной атмосферы присутствовали пары воды, СО2, N2, NH3, H2, H2S, CO, CH4, HF, HC1. Преобладал, по-видимому, азот. Содержание СО2 было не слишком высоким, не позволившим из-за «парникового эффекта» испариться древнему океану. Газы, поступавшие из недр Земли (за исключением инертных), были представлены, как и современные вулканические эманации, восстановленными или недоокисленными соединениями.
Под воздействием солнечной радиации в атмосфере происходила диссоциация паров воды. Непрерывное удаление главного восстановителя – водорода – в результате диссипации вызывало прогрессирующее накопление окислителей. Это имело два важных последствия. Во-первых, постепенно образовывался экран, предохраняющий поверхность Земли от ультрафиолетовой радиации. Во-вторых, возник процесс окисления восстановленных газов, непрерывно поступавших из мантии, окислителями фотохимического происхождения, которые постоянно возобновлялись в результате диссипации водорода. Окисленные соединения растворялись в конденсирующейся атмосферной влаге и вымывались из атмосферы дождями. Этот процесс, имевший циклический характер, наметил направленность будущих биогеохимических циклов.
Наиболее древние
Следующий этап связан с распространением цианобактерий (сине-зеленых водорослей), которые для синтеза органического вещества начали использовать не энергию окислительно-восстановительных химических реакций, а световую энергию Солнца. Признаки деятельности этих простейших форм жизни отмечены уже в самых древних геологических образованиях. Таков комплекс пород Исуа в Западной Гренландии, содержащий органические соединения и оксиды железа и имеющий возраст 3,8 млрд. лет; углеродистые сланцы Онвервахт серии Свазиленд в Южной Африке с возрастом 3,4 млрд. лет. В кремнистых образованиях Варавууна (Западная Австралия), возраст которых определен в 3,5 млрд. лет, уже обнаружены строматолиты – структуры, созданные сообществами цианобактерий. Древнейшие жизненные процессы протекали в водной среде при наличии свободного кислорода, свидетельством чему являются полосчатые железо-оксидные кварциты Исуа. Возможно, присутствие свободного кислорода было не повсеместным, а лишь на отдельных участках. При реакции фотосинтеза кислород стал выделяться в качестве метаболита. Для цианобактерий свободный кислород токсичен, они нормально развиваются при его отсутствии. Широкому распространению цианобактерий в древнем океане способствовало быстрое связывание кислорода в форме оксида железа и сульфатов. По этой причине, несмотря на фотосинтетическую деятельность цианобактерий, содержание свободного кислорода в океане и атмосфере длительное время не увеличивалось. Лишь после окисления двухвалентного железа, растворенного в древних океанах и первоначально связанного в форме сидеритов, из которых впоследствии образовались мощные толщи железистых кварцитов (джес-пелитов), началось накопление кислорода в атмосфере. По расчетам немецкого геохимика М. Шидловского (1980), в оксидах железа связано примерно 56%всего выделившегося в результате фотосинтеза кислорода, в сульфатах – 39% и только 5% находится в свободном состоянии и распределено между атмосферой и океаном.
Содержание кислорода
в атмосфере стало
Биогеохимической особенностью цианобактериальной системы являлось преобладание продукционных процессов над деструкционными. В результате этого в толще осадков древних морей было погребено огромное количество органического углерода, а в окружающую среду выделено в 2,7 раза большее количество кислорода. Изменение геохимии древних океанов и атмосферы создало предпосылки для совершенствования биогеохимических Циклов.
По мнению микробиологов, прокариоты (бактерии и сине-зеленые водоросли) отличаются большой устойчивостью и консервативностью. Функционирование прокариотной системы продолжалось на протяжении огромного интервала времени – 1,5–2 млрд. лет. Около 1,5 млрд. лет назад произошел постепенный переход от цианобактериальных сообществ к сообществам алъгобактериалъным. Вероятно, определяющую роль в этом событии сыграло накопление свободного кислорода в океане и атмосфере и как результат – создание новых условий, в которых конкурентность цианобактерий была невысокой. В глобальном процессе создания органического вещества водоросли постепенно заместили цианобактерий. В конце протерозоя на протяжении венда (670–570 млн. лет назад) сложилась система из продуцентов-фотосинтетиков и консументов-животных, обусловливающая углерод-кислородный биогеохимический цикл.
Формирование химического
состава атмосферы происходило
путем закономерной дифференциации
химических элементов, выделенных из недр
Земли в виде восстановленных
газов. Система, обеспечивающая указанную
дифференциацию, изначально абиогенная
и имевшая циклический
Для нормального состояния окружающей среды особо важное значение имеют биогеохимические процессы, регулирующие содержание кислорода и углекислого газа в атмосфере. Свободный кислород – необходимое условие существования главных форм жизни, углекислый газ – не только исходное «сырье» для фотосинтеза, но также химическое соединение, от содержания которого зависят термические и климатические условия на поверхности Земли.
Растительность Мировой суши Д° ее нарушения человеком имела массу около 2,5×1012 т сухого органического вещества. При условии содержания в нем 45% углерода масса этого элемента в растительности суши равна 1,15×1012 т. Для связывания такого количества углерода было использовано 4,2×1012 т СО2 и выделено в атмосферу 3,1×1012 т О2. В результате вырубки лесов и других последствий хозяйственной деятельности человечества масса растительности сократилась примерно на 25% и составляет около 1,88×1012 т сухого органического вещества, содержащего 0,865×1012 т углерода. Для синтеза органического вещества существующей растительности использовано 3,172×1012 т углекислого газа и выделено 2,3×1012 т кислорода.
В общей массе растительности суши химические элементы связаны на длительное время. Динамику массообмена газов на протяжении года отражают соотношения масс годовой продукции фотосинтеза и деструкции отмершего органического вещества.
Ежегодная продукция растительности суши до нарушения ее человеком, вероятно, составляла (170–180)×109 т/год. При условии содержания углерода 45% в этой продукции было связано от 76×109 т до 81×109 т, в среднем 80×109 т углерода. Для создания такого количества органического вещества ежегодно потреблялось 296×109 т СО2 и выделялось в атмосферу 216×109 т О2. Если учесть, что около 1/3 синтезируемого органического вещества окисляется и разрушается в результате дыхания растений, то в годовой продукции растительности углерода связывалось соответственно больше. Но в силу того, что это количество углерода биохимически окислялось и превращалось в СО2, оно не влияет на конечный баланс СО2 и О2 и при дальнейших расчетах не учитывается.
Принимая во внимание уменьшение
на 25% растительности в результате воздействия
человека, можно считать, что современная
растительность Мировой суши для
синтеза годовой продукции
Обмен газов в системе
живое вещество – атмосфера –
живое вещество имеет циклический
характер. Растения не смогут синтезировать
органическое вещество, если в воздухе
не будет углекислого газа. При
реакции фотосинтеза для
Если процессы разложения
разрушают такое же количество органического
вещества, которое образуется растительностью,
то содержание кислорода не может
увеличиваться, независимо от его выделения
растениями: сколько выделится при
фотосинтезе, столько же поглотится
при разложении. Непременное условие
возрастания кислорода в
Сопоставив массу
Распределение живого вещества и неразложившихся органических остатков на поверхности суши подчиняется биоклиматической зональности. Наибольшая фитомасса характерна для влажных тропических лесов, наибольшее количество мертвого органического вещества – для зоны бореальных хвойных лесов.
Газы находятся не только в обособленной газовой оболочке планеты. В воде морей и океанов в растворенном состоянии содержится 4,32×1018 м3 газов. Это количество в 3 раза больше всего объема воды Мирового океана.
Между тропосферой и поверхностным слоем воды океана существует подвижное равновесие. Растворение газов в воде зависит от температуры и солености. Холодные воды растворяют больше газов. Поэтому океан в холодное время года поглощает газы из атмосферы, а в теплое время – выделяет их. В пресных водах растворимость газов выше, чем в соленых. В среднем в 1 л океанической воды находится:
Растворенные газы………….N2
Содержание, см3…………….13 2–8 0,32 до 50
Большое количество углекислого газа обусловлено тем, что, растворяясь в воде, он вступает в химическое взаимодействие с водой. При этом образуется угольная кислота и хорошо растворимый продукт ее диссоциации [НСО3]-.
В результате растворения газов в воде и их последующего испарения между гидросферой и атмосферой происходит непрерывный циклический обмен, благодаря которому поддерживается Динамическое равновесие. В этом глобальном процессе участвует и вода в результате испарения и конденсации.