Роль статистики в формировании эконометрического метода. Корреляционный анализ

Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 18:37, лекция

Краткое описание

В эконометрике, как дисциплине на стыке экономики и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):
а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных;
б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики;
в) применение эконометрических методов и моделей для статистического анализа конкретных экономических данных.
Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности.

Вложенные файлы: 1 файл

Роль статистики в формировании эконометрического метода. Корреляционный анализ.doc

— 157.00 Кб (Скачать файл)

 

 

Работа на тему: «Роль статистики в формировании эконометрического метода. Корреляционный анализ»

 

 

 

 

 

 

 

 

 

 

 

Роль статистики в формировании эконометрического  метода. Структура эконометрики.

В эконометрике, как дисциплине на стыке экономики и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных;

б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики;

в) применение эконометрических методов  и моделей для статистического  анализа конкретных экономических  данных.

Кратко рассмотрим три только что  выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида в) основное — успешное решение задач конкретной области экономики. Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным, с другой — результаты представляют интерес не для всей экономической науки, а лишь для некоторого направления в ней.

Прикладная статистика — другая область знаний, чем математическая статистика. Это четко проявляется и при преподавании. Курс математической статистики состоит в основном из доказательств теорем, как и соответствующие учебные пособия. В курсах прикладной статистики и эконометрики основное — методология анализа данных и алгоритмы расчетов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе).

Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации. Прикладная статистика — методическая дисциплина, являющаяся центром статистики. При применении к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа «статистика в промышленности», «статистика в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике».

Математическая статистика играет роль математического фундамента для прикладной статистики. К настоящему времени очевидно четко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. В настоящее время исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Поток новых математических результатов (теорем) не ослабевает, но новые практические рекомендации по обработке статистических данных при этом не появляются. Можно сказать, что математическая статистика как научное направление замкнулась внутри себя.

Сам термин «прикладная статистика», используемый в нашей стране в отдельных публикациях с 1960-х годов, а как название научной области - с 1981г., возник как реакция на описанную выше тенденцию. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

В настоящее время  статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Разрыв между математической и прикладной статистикой проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ (например, в заслуженные Statgraphics и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической статистике. В результате специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (и что еще хуже — разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки (напомним, анализ типовых ошибок при применении критериев согласия Колмогорова и омега-квадрат дан в [2]), в том числе в таких ответственных документах, как государственные стандарты по статистическим методам (ниже подробнее рассказано об удручающих результатах анализа этих стандартов; итоги суммированы в статье [8]).

Ситуация с внедрением современных  статистических (эконометрических) методов  на предприятиях и в организациях различных отраслей народного хозяйства  противоречива. К сожалению, при  развале отечественной промышленности в 1990-е годы больше всего пострадали структуры, наиболее нуждающиеся в эконометрических методах — службы качества, надежности, центральные заводские лаборатории и др. Однако толчок к развитию получили службы маркетинга и сбыта, сертификации, прогнозирования, инноваций и инвестиций, которым также полезны различные эконометрические методы, в частности, методы экспертных оценок. [Викпедия]

Корреляционный анализ

 

Основная задача корреляционного  анализа заключается в выявлении  взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи: отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; обнаружение ранее неизвестных причинных связей. Корреляция непосредственно не выявляет причинных связей между параметрами, но устанавливает численное значение этих связей и достоверность суждений об их наличии.

Выборочная ковариация является мерой взаимосвязи между  двумя переменными.

Ковариация  между двумя переменными  рассчитывается следующим образом:

 

,

 

где - фактические значения случайных переменных x и y, . .

ковариация - это статистическая мера взаимодействия двух случайных переменных, таких, например, как доходности двух ценных бумаг. Положительное значение ковариации показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону.

Ковариация  зависит от единиц, в которых измеряются переменные ..

Поэтому для  измерения силы связи между двумя  переменными используется другая статистическая характеристика, называемая коэффициентом  корреляции.

При проведении корреляционного анализа вся  совокупность данных рассматривается  как множество переменных (факторов), каждая из которых содержит n –наблюдений; хik – i-ое наблюдение k-ой переменной. Основными средствами анализа данных являются парные коэффициенты корреляции, частные коэффициенты корреляции и множественные коэффициенты корреляции.

Коэффициент парной корреляции

Для двух переменных теоретический коэффициент корреляции определяется следующим образом:

 

.

 

где   - дисперсии случайных переменных , а их ковариация.

Парный коэффициент  корреляции является показателем тесноты  связи лишь в случае линейной зависимости  между переменными и обладает следующими основными свойствами:

Коэффициент корреляции принимает значение в интервале (-1,+1), или |rxy| < 1.

Коэффициент корреляции не зависит от выбора начала отсчета  и единицы измерения, т.е.

 

r (α1X+β; α2Y+β)= rxy,

 

где α1, α2, b - постоянные величины, причем α1>0, α2>0.

Случайные величины Х, Y, можно уменьшать (увеличивать) в  α раз, а также вычитать или прибавлять к значениям одно и тоже число β - это не приведет к изменению коэффициента корреляции r.

При r = ±1 случайные величины связаны линейной зависимостью, т.е. .

При r = 0 линейная корреляционная связь отсутствует.

В практических расчетах коэффициент корреляции r генеральной совокупности обычно не известен. По результатам выборки может быть найдена его точечная оценка – выборочный коэффициент корреляции r, так как выборочная совокупность переменных случайна, то в отличие от параметра r , r – случайная величина. Оценкой коэффициента корреляции является выборочный парный коэффициент корреляции:

 

= , (3.1)

 

где - оценки дисперсий величин .

Для оценки значимости коэффициента корреляции применяется t - критерий Стьюдента. При этом фактическое  значение этого критерия определяется по формуле:

 

      

 

Вычисленное по этой формуле значение tнабл сравнивается с критическим значением t-критерия, которое берется из таблицы значений t Стьюдента с учетом заданного уровня значимости и числа степеней свободы.

Если tнабл > tкр, то полученное значение коэффициента корреляции признается значимым (то есть нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается). И таким образом делается вывод о том, что между исследуемыми переменными есть тесная статистическая взаимосвязь.

Если значение близко к нулю, связь между переменными слабая. Если случайные величины связаны положительной корреляцией, это означает, что при возрастании одной случайной величины другая имеет тенденцию в среднем возрастать. Если случайные величины связаны отрицательной корреляцией, это означает, что при возрастании одной случайной величины, другая имеет тенденцию в среднем убывать.

Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества m признаков n наблюдений получают матрицу коэффициентов парной корреляции R.

 

         

 

Одной корреляционной матрицей нельзя полностью описать зависимости между величинами. В связи с этим, в многомерном корреляционном анализе рассматривается две задачи:

  1. Определение тесноты связи одной случайной величины с совокупностью остальных (m – 1) величин, включенных в анализ;
  2. Определение тесноты связи между величинами при фиксировании или исключении влияния остальных k величин, при k<(m-2).

Эти задачи решаются с  помощью коэффициентов множественной  и частной корреляции, соответственно.

Множественный коэффициент корреляции

Решение первой задачи осуществляется с помощью выборочного коэффициента множественной корреляции по формуле

 

,  

 

где - определитель корреляционной матрицы R (3.3);

- алгебраическое дополнение  элемента rjj той же матрицы R.

Квадрат коэффициента множественной  корреляции принято называть выборочным множественным коэффициентом детерминации, который показывает, какую долю вариации (случайного разброса) исследуемой величины Хj объясняет вариация остальных случайных величин X1 , X2 , . . . , Xm.Коэффициенты множественной корреляции и детерминации являются величинами положительными, принимающими значения в интервале от 0 до 1. При приближении коэффициента R2 к единице можно сделать вывод о тесноте взаимосвязи случайных величин, но не о ее направлении. Коэффициент множественной корреляции может только увеличиваться, если в модель включать дополнительные переменные и не увеличится, если из имеющихся признаков производить исключение.

Проверка значимости коэффициента множественной корреляции осуществляется путем сравнения расчетного значения критерия Фишера: 

,   

 

с табличным Fтабл. Табличное значение критерия определяется заданным уровнем значимости и степенями свободы и . Коэффициент R2 значимо отличается от нуля, если выполняется неравенство

.

Частный коэффициент корреляции

Если рассматриваемые  случайные величины коррелируют  друг с другом, то на величине коэффициента парной корреляции частично сказывается влияние других величин. В связи с этим возникает необходимость исследования частной корреляции между величинами при исключении влияния одной или нескольких других случайных величин.

Выборочный частный коэффициент корреляции определяется по формуле:

 

‘  

 

где – алгебраические дополнения к соответствующим элементам матрицы.

Частный коэффициент  корреляции, так же как и парный коэффициент корреляции изменяется от –1 до +1.

 

Используемая литература

 

  1. Основная Экономико–математические методы и прикладные модели: Учебн. пособие для вузов / В.В.Федосеев, А.Н. Гармаш, Д.М. Дайтбегов, И.В. Орлова, .А.Половников.- М.:ЮНИТИ, 1999.- 391 с.
  2. Эконометрика: Учебник/Под ред. И.И. Елисеевой – М.: Финансы и статистика, 2001.

Информация о работе Роль статистики в формировании эконометрического метода. Корреляционный анализ