Автор работы: Пользователь скрыл имя, 01 Апреля 2013 в 22:35, курсовая работа
Оценивание точности прогноза (в частности, с помощью доверительных интервалов) — необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей).
Введение 3
Отчет №1. Построение парной регрессии. 5
1.1. Исходные данные 5
1.2. Построение модели парной регрессии. 6
1.3. Исследование остатков. 6
1.3.1. Проверка на автокорреляцию остатков (зависимость остатков) 7
1.3.2. Проверка на нормальность 7
1.3.3. Проверка на гетероскедастичность 8
1.4. Исследование модели регрессии 8
1.4.1. Проверка на значимость коэффициентов модели 8
1.4.2. Проверка функциональной формы 8
2.1 Исходные данные для индекса РТС 9
2.2 Проверка стационарности исходного ряда 9
2.2.1 Визуальный анализ и построение трендов 9
2.2.2. Тестирование нестационарности 11
2.3. Стационарные преобразования. 11
2.3.1. Разностные преобразования. 11
2.3.2. Логарифмические темпы роста 13
2.4. Исходные данные для индекса Доу-Джонса 15
2.5. Проверка стационарности исходного ряда (индекса Доу-Джонса) 16
2.5.1. Визуальный анализ и построение трендов 16
2.5.2. Тестирование нестационарности 18
2.6. Стационарные преобразования. 19
2.6.1. Разностные преобразования. 19
2.6.2. Логарифмические темпы роста 21
Отчет 3. "Методы краткосрочного прогнозирования. Модели ARMA" 24
3.1. Исходные данные 24
3.2. Проверка стационарности ряда 25
3.3. Построение моделей ARMA (p,q) 25
3.4. Диагностика модели 25
3.4.1. Проверка стационарности 25
3.4.2. Проверка прогнозной точности 30
3.5. Прогнозирование 31
Заключение 34
Список используемой литературы 35