Автор работы: Пользователь скрыл имя, 12 Января 2014 в 19:12, реферат
Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению (а может быть все начнется сначала, как в первобытные времена и...?).
1Р=2.58.10-4 Кл/кг.
Мощность экспозиционной дозы обычно измеряют в мкР/ч.
Можно показать, что, приближенно,
поглощенная биологической
Биологический эквивалент рада.
Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1.
Таблица 1
S, кеВ/мкм воды. |
3.5 и меньше |
7 |
23 |
53 |
175 |
кк |
1 |
2 |
5 |
10 |
20 |
Биологический эквивалент рада - доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2.
Таблица 2.
Виды излучения. |
КК |
g-излучение |
1 |
b-излучение |
1 |
a-излучение |
10 |
Эквивалентная доза излучения сложного состава определяется по формуле:
где Dэкв - эквивалентная поглощенная доза, бэр;
Dп,i и KKi поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.
Расчет доз, создаваемых источниками
b-, g-излучения.
На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.
Расчет доз, создаваемых источниками g-излучения.
Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт) из следующего выражения [6]:
Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:
,
где Q-активность источника в мКи,
Кg - ионизационная постоянная Р.см2/(ч.мКи),
r-расстояние до источника в см,
t-время облучения в ч.
Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.
Значение Кg табулировано, но его можно вычислить по формуле:
где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2/г.
Расчет доз, создаваемых источниками b- излучения.
Предположим, что имеется источник b- излучения с известными для него Еmax,i и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:
где а-активность,
t-время,
m’i-линейный коэффициент ослабления b- излучения в воздухе.
Для выражения дозы в радах необходимо
воспользоваться следующей
,
где Q-активность источника в мКи,
r-расстояние до источника в см,
t-время облучения в ч,
Еmax,i-максимальная энергия источника, МэВ,
Rmax,i-максимальный пробег в г/см2.
Предельно допустимые дозы облучения.
Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).
Таблица 3 [6].
Группа органов |
1 |
2 |
3 |
4 |
доза в год, бэр/год |
5 |
15 |
30 |
75 |
В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:
Таблица 4.
Группа. |
Органы и ткани. |
1 |
Все тело, костный мозг. |
2 |
Легкие, желудочно-кишечный тракт. |
3 |
Костная ткань, щитовидная железа. |
4 |
Кисти рук. |
В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.
Расчет защитных экранов от g-излучения.
Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i для каждой компоненты и полную дозу D0 без защитного экрана, и известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:
а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).
Биологическое воздействие радиации.
Ионизирующее излучение в
Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.
Острая лучевая болезнь.
Острая лучевая болезнь
Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) - головокружение, тошнота. Латентный период (около 1 месяца) - постепенное снижение первичных признаков. Восстановление полное.
Острая лучевая болезнь
Острая лучевая болезнь
Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен.
Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга.
Хроническая лучевая болезнь возникает
при ежедневном получении дозы в
0.005 Гр. Наблюдается развитие различных
заболеваний, связанных с дисфункцией
желез внутренней секреции, нарушение
АД. Профилактика хронической лучевой
болезни заключается в
Заключение.
Несмотря на ту опасность, которую
представляет атомная энергетика, она
является той экологически чистой
индустрией, на которую возлагает
свои надежды все передовое
Список литературы
1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.
2. Краткая медицинская
3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987.
4. Нормы радиационной
5. Радиоактивные индикаторы в
химии. Основы метода: Учебное
пособие для ун-тов/Лукьянов В.
6. Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977.