Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 09:18, лекция
В жизненном цикле человек и окружающая его среда обитания образуют постоянно действующую систему «человек – среда обитания».
Среда обитания – окружающая человека среда, обусловленная в данный момент совокупностью факторов (физических, химических, биологических, социальных), способных оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека его здоровье и потомство.
При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 30 0С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116 0С.
Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при tос>30 0С, так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу.
Недостаточная влажность воздуха
также может оказаться
Вопреки установившемуся мнению величина потовыделения мало зависит от недостатка воды в организме или от ее чрезмерного потребления. У человека работающего, в течении 3 часов без питья, образуется только на 8 % меньше пота, чем при полном возмещении потерянной влаги. При потреблении воды вдвое больше потерянного количества наблюдается увеличение потовыделения всего на 6 % по сравнению со случаем, когда вода возмещалась на 100 %. Считается допустимым для человека снижение его массы на 2…3 % путем испарения влаги – обезвоживание организма. Обезвоживание на 6 % влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15…20 % приводит к смертельному исходу.
Вместе с потом организм теряет значительное количество минеральных солей. При неблагоприятных условиях потеря жидкости может достигать 8-10 л за смену и в ней до 60 г поваренной соли. Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки.
Для восстановления водного баланса
работающих в горячих цехах устанавливают
пункты подпитки подсоленной газированной
питьевой водой из расчета 4…5 л на
человека в смену. На ряде заводов
для этих целей применяют белково-
Длительное воздействие
Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличивается, изменяется углеводородный обмен. Прирост обменных процессов при понижении температуры на 1 0С составляет около 10 %, а при интенсивном охлаждении он может возрасти в 3 раза по сравнению с уровнем общего обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.
В горячих цехах промышленных предприятий
большинство технологических
Длина волны лучистого потока с максимальной энергией теплового излучения определяется по закону смещения Вина (для абсолютно черного тела) λЕмах = 2,9·103/Т. У большинства производственных источников максимум энергии приходится на инфракрасные лучи (λЕмах >0,78 мкм).
Инфракрасные лучи оказывают на
организм человека в основном тепловое
действие. Под влиянием теплового
облучения в организме
По характеру воздействия на организм человека инфракрасные лучи подразделяются на коротковолновые лучи с длиной волны 0,76…1,5 мкм и длинноволновые с длиной более 1,5 мкм. Тепловые излучения коротковолнового диапазона глубоко проникают в ткани и разогревают их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделение, а при длительном облучении тепловой удар. Длинноволновые лучи глубоко в ткани не проникают и поглощаются в основном в эпидермисе кожи. Они могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.
Кроме непосредственного воздействия на человека лучистая теплота нагревает окружающие конструкции. Это вторичные источники отдают теплоту окружающей среде излучением и конвекцией, в результате чего температура воздуха внутри помещения повышается.
Общее количество теплоты, поглощенное телом, зависит от размера облучаемой поверхности, температуры источника излучения и расстояния до него. Для характеристики теплового излучения принята величина, названная интенсивностью теплового облучения. Интенсивность теплового облучения JЕ – это мощность лучистого потока, приходящаяся на единицу облучаемой поверхности.
Облучение организма малыми дозами
лучистой теплоты полезно, но значительная
интенсивность теплового
Интенсивность теплового облучения на отдельных рабочих местах может быть значительной. Например, в момент заливки стали в форму она составляет 12000 Вт/м2; при выбивке отливок из опок 3500…2000 Вт/м2, а при выпуске стали из печи в ковш достигает 7000 Вт/м2.
Атмосферное давление оказывает существенное влияние на процесс дыхания и самочувствие человека. Если без воды и пищи человек может прожить несколько дней, то без кислорода – всего несколько минут. Основным органом дыхания человека, посредством которого осуществляется газообмен с окружающей средой (главным образом О2 и СО2), является трахибронхиальное дерево и большое число легочных пузырей (альвеол), стенки которых пронизаны густой сетью капиллярных сосудов. Общая поверхность альвеол взрослого человека составляет 90…150 м2. Через стенки альвеол кислород поступает в кровь для питания тканей организма.
Наличие кислорода во вдыхаемом
воздухе – необходимое, но недостаточное
условие для обеспечения
Экспериментально установлено:
,
где B - атмосферное давление вдыхаемого воздуха, мм рт.ст.;
47 – парциальное давление насыщенных водяных паров в альвеолярном воздухе, мм рт.ст.;
- объем кислорода, содержащийся в альвеолярном воздухе, %;
- парциальное давление
Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода в пределах 95…120 мм рт. ст. Изменение вне этих пределов приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему. Так, на высоте 2…3 км ( мм рт.ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. Но даже длительное пребывание человека в этой зоне не сказывается существенно на его здоровье, и она называется зоной достаточной компенсации. С высоты 4 км ( мм рт.ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода ( ), может наступить кислородное голодание – гипоксия. Основные признаки гипоксии – головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.
Как показали исследования, удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом ( ) до высоты около 12 км. При длительных полетах на летательных аппаратах на высоте более 4 км применяют либо кислородные маски, либо скафандры, либо герметизацию кабин. При нарушении герметизации давление в кабине резко снижается. Часто этот процесс протекает так быстро, что имеет характер своеобразного взрыва и называется взрывной декомпрессией. Эффект воздействия взрывной декомпрессии на организм зависит от начального значения и скорости понижения давления на 385 мм рт.ст. за 0,4 с человек переносит без каких либо последствий. Однако новое давление, которое возникает в результате декомпрессии, может привести к высотному метеоризму и высотным эмфиземам. Высотный метеоризм – это расширение газов, имеющихся в свободных полостях тела. Так, на высоте 12 км объем желудка и кишечного тракта увеличивается в 5 раз. Высотные эмфиземы, или высотные боли – это переход газа из растворенного состояния в газообразное.
В ряде случаев, например при производстве работ под водой, в водонасыщенных грунтах работающие находятся в условиях повышенного атмосферного давления. При выполнении кессонных и глубоководных работ обычно различают три периода: повышенного давления – компрессия; нахождение в условиях повышенного давления и период понижения давления – декомпрессия. Каждому из них присущ специфический комплекс функциональных изменений в организме.
Избыточное давление воздуха приводит к повышению парциального давления кислорода в альвеолярном воздухе, к уменьшению объема легких и увеличению силы дыхательной мускулатуры, необходимой для производства вдоха-выдоха. В связи с этим работа на глубине требует поддержания повышенного давления с помощью специального снаряжения или оборудования, в частности кессонов или водолазного снаряжения.
При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса. Длительное пребывание при избыточном давлении приводит к токсическому действию некоторых газов, входящих в состав вдыхаемого воздуха. Оно проявляется в нарушении координации движений, возбуждении или угнетении, галлюцинациях, ослаблении памяти, расстройстве зрения и слуха.
Наиболее опасен период декомпрессии, во время которого и вскоре после выхода в условиях нормального атмосферного давления может развиваться декомпрессионная (кессонная) болезнь. Сущность ее состоит в том, что в период компрессии и пребывания при повышенном атмосферном давлении организм через кровь насыщается азотом. Полное насыщение организма азотом наступает через 4 ч пребывания в условиях повышенного давления.
В процессе декомпрессии вследствие падения парциального давления в альвеолярном воздухе происходит десатурация азота из тканей. Выделение азота осуществляется через кровь и затем легкие. Продолжительность десатурации зависит в основном от степени насыщения тканей азотом (легочные альвеолы диффундируют 150 мл азота в минуту). Если декомпрессия производится форсированно, в крови и других жидких средах образуются пузырьки азота, которые вызывают газовую эмболию и как ее проявление – декомпрессионную болезнь. Тяжесть декомпрессионной болезни определяется массовостью закупорки сосудов и их локализацией. Развитию декомпрессионной болезни способствует переохлаждение и перегревание организма. Понижение температуры приводит к сужению сосудов, замедлению кровотока, что замедляет удаление азота из тканей и процесс десатурации. При высокой температуре наблюдается сгущение крови и замедление ее движения.
Информация о работе Эволюция среды обитания, переход от биосферы к техносфере