Эволюция среды обитания, переход от биосферы к техносфере

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 09:18, лекция

Краткое описание

В жизненном цикле человек и окружающая его среда обитания образуют постоянно действующую систему «человек – среда обитания».
Среда обитания – окружающая человека среда, обусловленная в данный момент совокупностью факторов (физических, химических, биологических, социальных), способных оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность человека его здоровье и потомство.

Вложенные файлы: 1 файл

БЖД лекции домашний.doc

— 721.00 Кб (Скачать файл)

В настоящее время существуют два  основных направления минимизации  вероятности возникновения и  последствий чрезвычайных ситуаций на промышленных объектах. Первое направление заключается в разработке технологических и организационных мероприятий, уменьшающих вероятность реализации опасного поражающего потенциала современных технических систем. В рамках этого направления технические системы снабжают защитными устройствами – средствами взрыво- и пожарозащиты технологического оборудования, молниезащиты, локализации и тушения пожаров и т.д.

Второе направление заключается  в подготовке объекта, обслуживающего персонала, служб гражданской обороны и населения к действиям в условиях чрезвычайных ситуаций. Основой второго направления является формирование планов действий в чрезвычайных ситуациях, для создания которых нужны детальные разработки сценариев возможных аварий и катастроф на конкретных объектах. Для этого необходимо располагать экспериментальными и статистическими данными о физических и химических явлениях, составляющих возможную аварию; прогнозировать размеры и степень поражения объекта при воздействии на него поражающих факторов различных видов.

С целью осуществления контроля за соблюдением мер безопасности, оценки достаточности и эффективности  мероприятий по предупреждению и  ликвидации чрезвычайных ситуаций на промышленных объектах Правительство  Российской Федерации постановлением от 1 июля 1995 г. № 675 «О декларации безопасности промышленного объекта Российской Федерации» ввело для предприятий, учреждений, организаций и других юридических лиц всех форм собственности, имеющих в своем составе производства повышенной опасности обязательную разработку декларации промышленной безопасности.

Приказом МЧС России и Гостехнадзора  России от 4 апреля 1996 г. № 222/59 введен в  действие «Порядок разработки декларации безопасности промышленного объекта  Российской Федерации».

Согласно этого постановления декларация безопасности промышленного объекта является документом, в котором отражены характер и масштабы опасностей на промышленном объекте и выработанные мероприятия по обеспечению промышленной безопасности и готовности к действиям в техногенных чрезвычайных ситуациях. Декларация разрабатывается как для действующих, так и для проектируемых предприятий.

Как итоговый документ декларация безопасности включает следующие разделы: общая  информация об объекте; анализ опасности  промышленного объекта; обеспечение готовности промышленного объекта к локализации и ликвидации чрезвычайных ситуаций; информирование общественности; и приложения, включающие ситуационный план объекта и информационный лист.

Декларация безопасности действующего промышленного объекта с особо опасными производствами является обязательным документом, который разрабатывается организацией собственными силами (или организацией, имеющей лицензию на такой вид работ) и представляется в органы Гостехнадзора России при получении лицензии на осуществление промышленной деятельности, связанной с повышенной опасностью производств.

Устойчивость промышленных объектов

 

Под устойчивостью работы промышленного  объекта понимают способность объекта  выпускать установленные виды продукции  в объемах и номенклатуре, предусмотренных соответствующими планами в условиях чрезвычайной ситуации, а также приспособленность этого объекта к восстановлению в случае повреждения. Для объектов, не связанных с производством материальных ценностей (транспорта, связи, линий электропередачи и т.п.) устойчивость определяется его способностью выполнять свои функции. Под устойчивостью технической системы понимается возможность сохранения ею работоспособности при чрезвычайной ситуации.

Повышение устойчивости технических  систем и объектов достигается главным образом организационно-техническими мероприятиями, которым всегда предшествует исследование устойчивости конкретного объекта.

На первом этапе исследования анализируют  устойчивость и уязвимость его элементов  в условиях чрезвычайной ситуации, а также оценивают опасность выхода из строя или разрушения элементов или всего объекта в целом. На этом этапе анализируют:

  • надежность установок и технологических комплексов;
  • последствия аварий отдельных систем производства;
  • распространение ударной волны по территории предприятия при взрывах сосудов, коммуникаций, ядерных зарядов и т.п.;
  • распространение огня при пожарах различных видов;
  • рассеивание веществ, высвобождающихся при чрезвычайной ситуации;
  • возможность вторичного образования токсичных, пожаро- и взрывоопасных смесей и т.п.

На втором этапе исследования разрабатывают  мероприятия по повышению устойчивости и подготовки объекта к восстановлению после чрезвычайной ситуации. Эти  мероприятия составляют основу плана-графика  повышения устойчивости объекта. В плане указывают объем и стоимость планируемых работ, источники финансирования, основные материалы и их количество, машины и механизмы, рабочую силу, ответственных исполнителей, сроки выполнения и т.д.

Исследование устойчивости функционирования объекта начинается задолго до ввода его в эксплуатацию. На стадии проектирования это в той или иной степени делает проектант. Такое же исследование объекта проводится соответствующими службами на стадии технических, экономических, экологических и иных видов экспертиз. Каждая реконструкция или расширение объекта также требует нового исследования устойчивости. Таким образом, исследование устойчивости – это не одноразовое действие, а длительный, динамический процесс, требующий постоянного внимания со стороны руководства, технического персонала, служб гражданской обороны.

Любой промышленный объект включает наземные здания и сооружения основного  и вспомогательного производства, складские  помещения и здания административно-бытового назначения. В зданиях и сооружениях основного и вспомогательного производства размещается типовое технологическое оборудование, сети газо-, тепло-, электроснабжения. Между собой здания и сооружения соединены сетью внутреннего транспорта, сетью энергоносителей и системами связи и управления. На территории промышленного объекта могут быть расположены сооружения автономных систем электро- и водоснабжения, а также отдельно стоящие технологические установки и т.д. Здания и сооружения возводятся по типовым проектам, что приводит к среднему уровню плотности застройки (обычно 30-60 %). Все это дает основание считать, что для всех промышленных объектов, независимо от профиля производства и назначения, характерны общие факторы, влияющие на устойчивость объекта и подготовку его к работе в условиях чрезвычайной ситуации.

На работоспособность промышленного  объекта оказывают негативное влияние  специфические условия и прежде всего район его расположения. Он определяет уровень и вероятность  воздействия опасных факторов природного происхождения (сейсмическое воздействие, сели, оползни, тайфуны, цунами, число гроз, ливневых дождей и т.д.). Поэтому большое внимание уделяется исследованию и анализу района расположения объекта. При этом выясняются метеорологические условия района (количество осадков, направление господствующих ветров, максимальная и минимальная температура самого жаркого и самого холодного месяца; изучается рельеф местности, характер грунта, глубина залегания подпочвенных вод, их химический состав). На устойчивость объекта влияют: характер застройки территории (структура, тип, плотность застройки), окружающие объект смежные производства, транспортные магистрали, естественные условия прилегающей местности (лесные массивы – источники пожаров, водные объекты – возможные транспортные коммуникации, огнепреградительные зоны и в то же время источники наводнений и т.п.).

Район расположения может оказаться  решающим фактором в обеспечении  защиты и работоспособности объекта  в случае выхода из строя штатных  путей подачи исходного сырья  или энергоносителей. Например, наличие реки вблизи объекта позволит при разрушении железнодорожных или трубопроводных магистралей осуществить подачу материалов, сырья и комплектующих водным транспортом.

При изучении устойчивости объекта  дают характеристику зданиям основного и вспомогательного производства, а также зданиям, которые не будут участвовать в производстве основной продукции в случае чрезвычайной ситуации. Устанавливают основные особенности их конструкции, указывают технические данные, этажность, длину и высоту, вид каркаса, стеновые заполнения, световые проемы, кровлю, перекрытия, степень износа, огнестойкость здания, число рабочих и служащих, одновременно находящихся в здании (наибольшая рабочая смена), наличие встроенных в здание и вблизи расположенных убежищ, наличие в здании средств эвакуации и их пропускная способность.

При оценке внутренней планировки территории объекта определяется влияние плотности  и типа застройки на возможность  возникновения и распространения  пожаров, образования завалов и  входов в убежища и проходов между зданиями. Особое внимание обращается на участки, где могут возникнуть вторичные факторы поражения. Такими источниками являются: емкости с ЛВЖ СДЯВ, склады ВВ и взрывоопасные технологические установки; технологические коммуникации, разрушение которых может вызвать пожары, взрывы и загазованность, склады легковоспламеняющихся материалов, аммиачные установки и др. При этом прогнозируются последствия следующих процессов:

  • утечки тяжелых и легких газов или токсичных дымов;
  • рассевания продуктов сгорания во внутренних помещениях;
  • пожары цистерн, колодцев, фонтанов;
  • нагрева и испарения жидкостей в бассейнах и емкостях;
  • воздействие на человека продуктов горения и иных химических веществ;
  • радиационного теплообмена при пожарах;
  • взрывов паров ЛВЖ;
  • образования ударной волны в результате взрывов паров ЛВЖ, сосудов, находящихся под давлением, взрывов в закрытых и открытых помещениях;
  • распространение пламени в зданиях и сооружениях объекта и т.п.

Технологический процесс изучается  с учетом специфики производства на время чрезвычайной ситуации (изменение технологии, частичное прекращение производства, переключение на производство новой продукции и т.п.). Оценивается минимум и возможность замены энергоносителей; возможность автономной работы отдельных станков, установок и цехов объекта; запасы и места расположения СДЯВ, ЛВЖ и горючих веществ; способы безаварийной остановки производства в условиях чрезвычайной ситуации. Особое внимание уделяется изучению систем газоснабжения, поскольку разрушение этих систем может привести к появлению вторичных поражающих факторов.

При исследовании систем управления производством на объекте изучают  расстановку сил и состояние  пунктов управления и надежности узлов связи; определяют источники  пополнения рабочей силы, анализируют  возможности взаимозаменяемости руководящего состава объекта.

Прогнозирование параметров опасных  зон

 

Оценка зон воздействия при  разгерметизации емкостей и сосудов.

Аварийная разгерметизация оборудования для хранения, транспортирования  и переработки веществ, находящихся в газообразном и жидком состоянии, приводит к выбросу содержимого аппаратов в окружающую среду. Размеры образующихся при этом опасных зон существенным образом зависят от физико-химических свойств поступающих в атмосферу веществ, условий их хранения в емкостях и т.д.

Рассмотрим способы хранения веществ  в жидком состоянии.

Вещества, у которых критическая  температура существенно ниже температуры  окружающей среды, хранят в специальных  теплоизолированных резервуарах (криогенных резервуарах с высокоэффективной вакуумно-порошковой теплоизоляцией) в сжиженном состоянии водород, кислород, азот и т.д. Пары этих веществ, неизбежно образующиеся при таком способе хранения, либо снова ожижаются, либо сбрасываются в атмосферу. При разгерметизации такого сосуда к жидкости из окружающей среды поступает тепловой поток, что приводит к немедленному вскипанию жидкости и переходу ее в газообразное состояние. Интенсивность процесса парообразования пропорциональна скорости подвода теплоты, которая, в свою очередь, зависит от условий теплообмена криогенной жидкости с атмосферой и подстилающей поверхностью, на которую произошел пролив.

Вещества, у которых критическая  температура больше температуры  окружающей среды, а температура  кипения меньше, тоже хранятся в  жидком состоянии, причем в отличие от веществ первой группы для ожижения их необходимо только сжать (СПГ, пропан, бутан, аммиак, хлор и т.д.). При разгерметизации емкости и потери давления в ней часть жидкости мгновенно испаряется, а оставшаяся охлаждается до температуры кипения при атмосферном давлении. Так, пропан может храниться при температуре 26,9 0С и давлении 1 МПа. После разгерметизации резервуара и падения давления до атмосферного температура оставшейся (неиспарившейся) жидкости будет – 42,1 0С. Неиспарившаяся жидкость может разлиться по подстилающей поверхности, и дальнейший процесс испарения будет происходить за счет притока теплоты из окружающей среды.

Вещества, у которых критическая  температура и температура кипения  больше температуры окружающей среды, находятся при атмосферном давлении в жидком состоянии. При поступлении таких веществ в атмосферу интенсивность процесса испарения определяется разностью парциальных давлений пара над поверхностью жидкости и в окружающей среде. Так как температура окружающей среды может лежать в широком диапазоне  -40…+50 0С (т.е. переменна для различных территорий и времен года), то одно и то же вещество можно отнести к этой или предыдущей группе. Так, температура кипения бутана при атмосферном давлении около 00 С, поэтому при отрицательных температурах окружающей среды бутан находится в жидком состоянии, а при положительных – в газообразном.

Информация о работе Эволюция среды обитания, переход от биосферы к техносфере