Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 18:07, контрольная работа
В химии окисление определяется как удаление электронов, а восстановление - как присоединение электронов; это можно проиллюстрировать на примере окисления ферро-иона в ферри-ион:
Fe2+-e → Fe3+
Отсюда следует, что окисление всегда сопровождается восстановлением акцептора электронов. Этот принцип окислительно-восстановительных процессов в равной мере применим к биохимическим системам и характеризует природу процессов биологического окисления.
Введение 3
Биологическое окисление. Понятие о метаболизме 5
История развития учения о биоокислении 6
Современная теория биоокисления 8
Митохондрианальное окисление 8
Синтез АТФ 18
Биологическая роль митохондрианального окисления 19
Варианты дыхательной цепи 19
Энергетический заряд клетки 21
Челночные механизмы переноса водорода 21
Заключение 24
Список используемой литературы 25
РОСОБРАЗОВАНИЕ
Государственное образовательное учреждение
высшего профессионального образования
«ПЕНЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ»
(ПГТА)
Кафедра Биологии, биохимии и экологии
Контрольная работа по дисциплине «Биохимия» на тему: «Биологическое окисление и его функции»
сот. 89630994545
д. 934630
Пенза 2011 год
Оглавление:
Введение 3
Биологическое окисление. Понятие о метаболизме 5
История развития учения о биоокислении 6
Современная теория биоокисления 8
Митохондрианальное окисление 8
Синтез АТФ 18
Биологическая роль митохондрианального окисления 19
Варианты дыхательной цепи 19
Энергетический заряд клетки 21
Челночные механизмы переноса водорода 21
Заключение 24
Список используемой литературы 25
Введение.
В химии окисление определяется как удаление электронов, а восстановление - как присоединение электронов; это можно проиллюстрировать на примере окисления ферро-иона в ферри-ион:
Fe2+-e → Fe3+
Отсюда следует, что окисление всегда сопровождается восстановлением акцептора электронов. Этот принцип окислительно-восстановительных процессов в равной мере применим к биохимическим системам и характеризует природу процессов биологического окисления.
Хотя некоторые бактерии (анаэробы) живут в отсутствие кислорода, жизнь высших животных полностью зависит от снабжения кислородом. Кислород, главным образом, используется в процессе дыхания – последнее можно определить как процесс улавливания клеточной энергии в виде АТФ при протекании контролируемого присоединения кислорода с водородом с образованием воды. Кроме того, молекулярный кислород включается в различные субстраты при участии ферментов, называемых оксигеназами. Многие лекарства, посторонние для организма вещества, канцерогены (ксенобиотики) атакуются ферментами этого класса, которые в совокупности получили название цитохрома Р450.
Гипоксические нарушения
метаболизма клетки занимают ведущее
место в патогенезе критических
состояний. Главную роль в формировании
необратимости патологических процессов
приписывают крайним
Введением кислорода можно спасти жизнь больных, у которых нарушено дыхание или кровообращение. В ряде случаев успешно применяется терапия кислородом под высоким давлением; следует однако отметить, что интенсивная или продолжительная терапия кислородом под высоким давлением может вызвать кислородное отравление.
При написании данной работы перед нами стояла цель: изучить биологическое окисление и его значение в жизнедеятельности клетки и организма в целом.
БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ.
Метаболизм – это совокупность химических реакций, протекающих в организме. При этом процессы, происходящие в просвете желудочно-кишечного тракта, не входят в понятие метаболизма, поскольку полость желудочно-кишечного тракта рассматривается как часть внешней среды. Метаболизм включает в себя более чем 100 000 разнообразных реакций, но существуют основные метаболические пути, построенные по единому плану. Такие пути могут быть линейными и разветвленными. Ферменты, катализирующие реакции, протекающие на этих путях, в организме объединены в мультиферментные системы. В мультиферментных системах продукт предыдущей реакции является субстратом для последующей.
Метаболизм – это двуединый процесс, складывающийся из 2-х частей: катаболизма и анаболизма. В ходе катаболизма происходит разрушение, расщепление сложных веществ до более простых. В процессе анаболизма организм синтезирует собственные сложные органические вещества из простых. Оба процесса связаны между собой большим числом реакций, хотя в клетке часто бывают пространственно разделены.
Однако, существуют химические реакции из числа обратимых, которые в равной степени можно отнести как к катаболизму, так и анаболизму. Принадлежность той или иной реакции к одному из этих процессов определяется тем, в какую сторону сдвинуто ее равновесие в данный момент времени.
1-й этап. Образование мономеров из полимеров.
Полимеры -------->Мономеры
Белки ----------->Аминокислоты
Крахмал --------->глюкоза
Жиры ------------>глицерин + жирные кислоты
2-й этап. Превращение мономеров в ПВК и Ацетил-КоА.
3-й этап. Превращение Ацетил-КоА в конечные продукты катаболизма: СО2 и Н2О.
Для всех классов веществ последний этап катаболизма одинаков: на 3-м этапе образуется большинство субстратов митохондриального окисления - 4 вещества из 9 основных и 5-й субстрат - ПВК.
БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.
ИСТОРИЯ РАЗВИТИЯ УЧЕНИЯ О БИООКИСЛЕНИИ.
А. Лавуазье в конце XVIII века показал, что животный организм потребляет из воздуха кислород и выделяет углекислый газ. Сделал вывод, что горение и окисление - это одно и то же, что биологическое окисление представляет собой "медленное горение", происходящее в присутствии воды и при низкой температуре.
В конце XIX века русские исследователи А.Н. Бах и В.И.Палладин, работая независимо друг от друга, предложили 2 основные теории для объяснения процессов, протекающих в ходе биологического окисления.
1-я теория: А.Н.Бах (1857-1946) полагал, что в живых клетках существуют особые ферменты - "оксигеназы", которые взаимодействуют с кислородом, образуя перекиси. Сам кислород является не очень активным окислителем. Зато перекиси ("активный кислород") являются очень сильными окислителями и способны передавать кислород окисляемому веществу.
Эта теория известна как "перекисная" или "теория активации кислорода".
2-я теория: В.И. Палладин (1859-1922) создал теорию "активации водорода". Считал, что универсальным путем окисления является отнятие от веществ (субстратов) водорода с участием специальных ферментов - хромогенов. После этого водород, по Палладину, может передаваться или на молекулу кислорода с образованием воды, или на другие молекулы, восстанавливая их.
Впоследствии теория
В.И.Палладина блестяще подтвердилась
для процессов
СОВРЕМЕННАЯ ТЕОРИЯ БИООКИСЛЕНИЯ.
Согласно СОВРЕМЕННОЙ ТЕОРИИ БИООКИСЛЕНИЯ в нашем организме окисление может происходить двумя способами:
1. Путем отнятия водорода
от окисляемого субстрата:
2. Путем присоединения
кислорода к окисляемому
МИТОХОНДРИАЛЬНОЕ ОКИСЛЕНИЕ (МтО).
Система митохондриального окисления - мультиферментная система, постепенно транспортирующая протоны и электроны на кислород с образованием молекулы воды.
Все ферменты митохондриального окисления встроены во внутреннюю мембрану митохондрий. Только первый переносчик протонов и электронов - никотинамидная дегидрогеназа расположена в матриксе митохондрии. Этот фермент отнимает водород от субстрата и передает его следующему переносчику. Полный комплекс таких ферментов образует "дыхательный ансамбль" («дыхательную цепь»), в пределах которого атомы водорода отнимаются от субстрата, затем передаются последовательно от одного переносчика к другому, и, наконец, передаются на кислород воздуха с образованием воды.
Существует строгая
последовательность работы каждого
звена в цепочке переносчиков.
Эта последовательность определяется
величиной РЕДОКС-ПОТЕНЦИАЛА (ОКИСЛИТЕЛЬНО-
На одной из стадий происходит разделение атомов водорода на Н+ и электроны. Протоны остаются временно в окружающей среде, а электроны идут дальше по цепи и в ее конце используются для активации О2. Кислород является конечным акцептором электронов.
O2 + 4e -----> 2O-2 (полное восстановление кислорода)
Все реакции, происходящие в дыхательной цепи, сопряжены. Переносчики водорода и электронов расположены в строгом порядке, в соответствии с величиной их редокс-потенциала.
В настоящее время различают три варианта дыхательных цепей:
Главная дыхательная цепь - это три мультиферментных комплекса, встроенных во внутреннюю мембрану митохондрии. Обозначаются они латинскими цифрами – I, III и IV.
МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ:
Комплекс I – НАДН-KoQ-редуктаза, комплекс III – KoQH2-редуктаза, комплекс IV – цитохромоксидаза. Есть еще комплекс II – сукцинат-KoQ-редуктаза, но он существует отдельно от остальных комплексов и не входит в состав главной цепи.
Эти комплексы транспортируют водород от никотинамидных дегидрогеназ на кислород воздуха, в результате чего создается электрохимический градиент концентраций протонов - DmH+. Он возникает на внутренней мембране митохондрий между матриксом и межмембранным пространством. Его составляют два основных фактора:
DmH+=Dy-k×DpH
DmH+ - положительная величина. Его можно выразить как в вольтах (V), так и в единицах энергии (кДж/моль). Изменение значения pH на одну единицу соответствует 0,06V или 5,7 кДж/моль.
Энергия DmH+ используется для следующих процессов:
Для человека наиболее важен синтез АТФ.
В полной цепи при окислении субстрата два атома водорода переносятся на НАД – кофермент никотинамидных дегидрогеназ.
Как видно из приведенной схемы, в полной цепи при передаче двух атомов водорода на кислород воздуха, в межмембранном пространстве оказываются 10 протонов, перенесенных сюда из матрикса.
Все переносчики встроены во внутреннюю мембрану митохондрий, кроме никотинамидных дегидрогенказ. Они составляют дыхательный ансамбль, тысячи таких ансамблей существуют в митохондрии и потребляют 90-95% кислорода, который используется клеткой. Два атома водорода отнимаются от субстрата и передаются на О2 с образованием Н2О. Разность потенциалов на двух концах полной цепи составляет 1.14V.