Автор работы: Пользователь скрыл имя, 01 Июля 2013 в 16:50, реферат
Углеводы составляют основной источник энергии в питании человека - самая дешевая пища. В развитых странах около 40% потребления углеводов приходится на рафинированные сахара, а 60% составляет крахмал. В менее развитых странах доля крахмала возрастает. За счет углеводов образуется основная часть энергии в организме человека.
Б И О Х И М И Я П И Т А Н И Я
БИОХИМИЧЕСКИЕ ОСНОВЫ ПИТАНИЯ ЧЕЛОВЕКА.
Полноценное питание должно содержать:
1. ИСТОЧНИКИ ЭНЕРГИИ (УГЛЕВОДЫ, ЖИРЫ, БЕЛКИ).
2. НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ.
3. НЕЗАМЕНИМЫЕ ЖИРНЫЕ КИСЛОТЫ.
4. ВИТАМИНЫ.
5. НЕОРГАНИЧЕСКИЕ (МИНЕРАЛЬНЫЕ) КИСЛОТЫ.
6. КЛЕТЧАТКУ
7. Н2О
ИСТОЧНИКИ ЭНЕРГИИ.
Углеводы, жиры и белки являются макропитательными веществами. Их потребление зависит от роста, возраста и пола человека и определяется в граммах.
Углеводы составляют основной источник энергии в питании человека - самая дешевая пища. В развитых странах около 40% потребления углеводов приходится на рафинированные сахара, а 60% составляет крахмал. В менее развитых странах доля крахмала возрастает. За счет углеводов образуется основная часть энергии в организме человека.
Жиры - это один из основных источников энергии. Перевариваются в желудочно-кишечном тракте (ЖКТ) гораздо медленнее, чем углеводы, поэтому лучше способствуют возникновению чувства сытости. Триглицериды растительного происхождения являются не только источником энергии, но и незаменимымых жирных кислот: линолевой и линоленовой.
Белки - энергетическая функция не является для них основной. Белки - это исочники незаменимых и заменимых аминокислот, а также предшественники биологически активных веществ в организме. Однако при окислении аминокислот образуется энергия. Хотя она и невелика, но составляет некоторую часть энергетического рациона.
Может ли этиловый спирт служить источником энергии? При окислении 1 грамма этанола выделяется 7 ккал энергии. Это больше, чем при распаде 1 грамма углеводов, и меньше, чем при распаде 1 грамма жиров. Энергия, которая выделяется при окислении этанола, запасается в виде АТФ. Метаболизм этанола протекает в печени:
Эта реакция идет в цитоплазме. Затем уксусный альдегид подвергается повторному окислению, но уже в митохондриях.
При окислении этанола до уксусной кислоты выделяется НАДН2, который идет на цепь тканевого дыхания и образуется АТФ.
Уксусная кислота в дальнейшем активируется.
Ац-КоА вступает в ЦТК.
Но этанол не является достаточно хорошим источником энергии.
Причины этого:
1. Образующийся уксусный
альдегид и сам этиловый спирт
являются токсичными для
2. Больные алкоголизмом мало потребляют адекватной пищи (мало белков).
3. Крепкие спиртные
напитки не содержат витаминов
4. Необходимо много
НАД для окисления этанола
и уксусного альдегида.
4. В организме этанол
может превращаться только
в жиры и стероиды, но из
него не может синтезироваться
глюкоза и гликоген. А нейроны
головного мозга человека
потребляют только глюкозу.
5. У алкоголиков наблюдается избыточное образование кетоновых тел, поэтому запах у них изо рта напоминает запах, который встречается у больных сахарным диабетом.
6. Усиливается синтез кетоновых тел.
Во многих развитых странах люди сейчас страдают от избытка питания, который ведет к ожирению, а в малоразвитых - наоборот, от недостаточности питания.
Недоедание.
12 тысяч человек в мире ежедневно умирают от голода. Недостаточность питания у детей приводит к таким нарушениям, как ИСТОЩЕНИЕ и КВАШИОРКОР.
Квашиоркор развивается
у детей при употреблении
малокалорийной пищи с
НЕЗАМЕНИМЫЕ ВЕЩЕСТВА ОРГАНИЗМА.
1) 15 витаминов
2) 10 аминокислот
3) 2 полиненасыщенных жирных кислоты
4) 20 неорганических веществ (минеральных элементов).
5) клетчатка.
КЛЕТЧАТКА
Компонент неутилизируемых пищевых волокон. В состав клетчатки входят целлюлоза, гемицеллюлоза, лигнин, пектин. Эти вещества содержатся во фруктах, овощах, необработанном зерне. Не переваривается в желудочно-кишечном тракте. Значение клетчатки для питания организма:
1. Регулирует перистальтику кишечника.
2. Участвует в формировании каловых масс.
3. Способствует развитию чувства насыщения при приеме пищи.
4. Создает необходимые
условия для функционирования
нормальной микрофлоры
5. Стимулирует выведение холестерина с желчью.
6. Уменьшает и задерживает всасывание глюкозы (важно для больных сахарным дибетом).
7. Является сорбентм для токсических веществ.
НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ
Это такие аминокислоты, которые не синтезируются в организме, а должны поступать извне: ТРИПТОФАН (суточная потребность 0.5г в сутки), ТРЕОНИН, ИЗОЛЕЙЦИН, ЛИЗИН, ВАЛИН, ЛЕЙЦИН (сут.потр.около 2г), ФЕНИЛАЛАНИН (сут.потр.около 2г), МЕТИОНИН (сут.потр.около 2г). АРГИНИН незаменим только у детей.
Пищевые белки сильно отличаются по аминокислотному составу. Растительные белки содержат неполный набор аминокислот и в несвойственных нашему организму соотношениях.
Животные белки имеют
хорошие химические характеристики
и высокую биологическую
Белки растительного происхождения имеют низкую химическую ценность. В белках какого-либо одного растения могут отсутствовать одна или несколько аминокислот. Поэтому организм должен получать РАЗНООБРАЗНУЮ растительную пищу. Белки зерен злаков полностью не перевариваются, так как они защищены оболочкой, состоящей из целлюлозы, которая не расщепляется пищеварительными ферментами желудочно-кишечного тракта.
НЕЗАМЕНИМЫЕ ЖИРНЫЕ КИСЛОТЫ
К ним относятся ЛИНОЛЕВАЯ и ЛИНОЛЕНОВАЯ кислоты. Они не синтезируются в организме человека и поэтому должны поступать с пищей. Обычно мы не испытываем в них недостатка, так как они содержатся в растительных продуктах (маслах), а также в рыбьем и курином жирах.
В организме незаменимые жирные
кислоты входят в состав клеточных
мембран, а также являются предшественниками
для синтеза биологически активных
веществ, таких, как простагландины.
Линолевая и линоленовая
ПРОСТАГЛАНДИНЫ - это 20-углеродные жирные кислоты, содержащие пятичленное углеводородное кольцо. Различают несколько групп простагландинов, которые отличаются друг от друга наличием кетоносвой и гидроксильной групп в 9-м и 11-м положениях.
Предшественники простагландинов высвобождаются из фосфолипидов мембран (непищевые!) и расщепляются под действием фермента фосфолипазы-А2. Это регуляторная стадия в биосинтезе простагландинов. С помощью этой стадии регулируется количество субстрата, который подвергается последующему действию фермента циклооксигеназы.
Кортикостероиды ингибируют синтез простагландинов, угнетая фермент фосфолипазу-А2. Этим можно объяснить противовоспалительное действие кортикостероидов.
Синтез простагландинов
1-я стадия катализируется ПГ-Н-циклооксигеназой. Этот фермент работает по универсальному механизму и, независимо от того, в каком органе или ткани эта реакция протекает, она заканчивается образованием ПГН2. Это сложный мультиферментный комплекс, который локализуется в микросомах. Он катализирует образование циклопентанового кольца (подробнее: см. лекцию по липоидам и биомембранам).
Ацетилсалициловая кислота (аспирин), а также все противовоспалительные нестероидные средства подавляют синтез простагландинов, являясь ингибиторами этого фермента.
2-ю стадию катализируют ферменты, общее название которых - конвертазы. Эти ферменты имеют тканевую специфичность, поэтому в каждом типе ткани из ПГН2 образуется свой продукт:
- в головном мозге - ПГD
- в половых железах - ПГЕ, ПГF.
Простагландины действуют в тех клетках, где они синтезируются. Характер действия простагландина зависит от типа клетки. В этом заключается принципиальное отличие простагландинов от гормонов.
Физиологические эффекты простагландинов.
1. Простагландины усиливают воспалительные процессы.
2. Регулируют приток крови к определенному органу.
3. Моделируют синаптическую передачу.
ПГЕ вызывает расслабление мускулатуры бронхов и трахеи. ПГЕ1 и ПГЕ2 используются как средства для снятия бронхоспазма (препараты-аэрозоли). В клинике используют препараты ингибиторов простагландинов.
Лабильными продуктами превращения простагландинов являются ТРОМБОКСАНЫ. Их функция заключается в том, что они участвуют в регуляции активности тромбоцитов. Являясь мощными стимуляторами образования тромбов, они способствуют агрегации тромбоцитов.
ПРОСТАЦИКЛИНЫ
предотвращают агрегацию
ЛЕЙКОТРИЕНЫ.
Это тоже производные
В И Т А М И Н Ы
Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:
1. Витамины абсолютно
необходимы организму и в
2. Витамины не синтезируются
в организме и должны
Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме.
ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ
Все причины можно разделить на внешние и внутренние.
ВНЕШНИЕ причины гиповитаминозов:
1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)
2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)
3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В6“ и снизиться потребность в витамине РР.
4. Социальные причины:
урбанизация населения,
ВНУТРЕННИЕ причины гиповитаминозов: