Развитие биологии

Автор работы: Пользователь скрыл имя, 14 Октября 2014 в 19:01, реферат

Краткое описание

Наиболее значимыми событиями первой половины XIX века стали становление палеонтологии и биологических основ стратиграфии, возникновение клеточной теории, формирование сравнительной анатомии и сравнительной эмбриологии, развитие биогеографии и широкое распространение трансформистских представлений. Центральными событиями второй половины XIX века стали публикация «Происхождения видов»Чарльза Дарвина и распространение эволюционного подхода во многих биологических дисциплинах (палеонтологии, систематике, сравнительной анатомии и сравнительной эмбриологии), становление филогенетики, развитие цитологии и микроскопической анатомии, экспериментальной физиологии и экспериментальной эмбриологии, формирование концепции специфического возбудителя инфекционных заболеваний, доказательство невозможности самозарождения жизни в современных природных условиях.

Вложенные файлы: 1 файл

Наиболее важные события XVII века.docx

— 37.45 Кб (Скачать файл)

Наиболее важные события XVII века — становление методической естественной истории, заложившей основы систематики животных и растений; развитие анатомии и открытие второго круга кровообращения; начало микроскопических исследований, открытие микроорганизмов и первое описание клеток растений, сперматозоидов и эритроцитов животных.

К XVII веку относится завершение традиции «травников». Швейцарский врач и ботаник Каспар Боэн в своем труде «Pinax Theatri Botanici» собрал все известные на тот момент виды растений (около 6000), уточнив синонимы. Это была последняя сводка такого размаха, в которой все ещё использовались приемы «народной таксономии». Группы растений в работе Боэна не имели характеристик, указывавших на их отличительные признаки. Названия растений формировались, по-прежнему, без строгих правил, иногда путём добавления слов-модифиаторов к названию, данному древнегреческими или древнеримскими авторами, иногда путём латинизации туземных названий растений. Боэн был знаком с книгой Чезальпино, но не видел смысла в применении метода, считая установление синонимики более важной задачей. Вместе с тем, с середины XVII века появляется все больше работ, написанных в традиции методической естественной истории, отталкивавшейся от труда Чезальпино.

Значительные перемены наблюдаются в области анатомии и физиологии животных и растений. Английский врач Уильям Гарвей (1578—1657), производя опыты с кровообращением и вскрытия животных, сделал ряд важных открытий. Он обнаружил венозные клапаны, создающие препятствие для тока крови в обратном направлении, показал изоляцию правого и левого желудочков сердца и открыл малый круг кровообращения (аналогичное открытие сделал незадолго до него Мигель Сервет, сожженный кальвинистами за свои богословские взгляды). Ян Сваммердам (1637—1680) и Марчелло Мальпиги (1628—1694) описали внутреннее строение многих беспозвоночных животных. Мальпиги описал сосуды растений и путём экспериментов показал наличие восходящего и нисходящего тока в разных сосудах.

 

Первое изображение растительных клеток на срезе пробки в «Micrographia» Роберта Гука(1665)

Итальянский естествоиспытатель Франческо Реди (1626—1698) экспериментально доказал невозможность самозарождения мух из гнилого мяса (затянув часть горшков с гнилым мясом кисеей, он смог воспрепятствовать откладке яиц мухами). Уже упоминавшийся Уильям Гарвей сделал детальное описание развития цыпленка и ряда других животных и высказал предположение, что все они так или иначе развиваются из яиц, хотя наблюдать яйца непосредственно он и не мог.

Наконец, в XVII веке сформировалась совершенно новая область исследований, связанная с изобретением микроскопа. Опубликованный Робертом Гуком (1635—1703) трактат «Микрография», посвященный описанию наблюдений при помощи микроскопа ряда объектов живой и неживой природы (срез пробки, блоха, муравей, кристаллы соли и др.), а также материальной культуры (острие иглы, лезвие бритвы, точка в книге и др.), вызвал широкий общественный резонанс. Помимо того, что он служил источником вдохновения Джонатана Свифта в некоторых фрагментах «Путешествий Гулливера», он создал моду на микроскопические исследования, в том числе и биологических объектов. Одним из ревностных любителей-микроскопистов стал голландский ремесленник Антони ван Левенгук (1632—1723), который вел наблюдения при помощи изготовленных им простых микроскопов и отсылал результаты наблюдений для публикации в Лондонское королевское общество. Левенгуку удалось описать и зарисовать целый ряд микроскопических существ (коловраток, инфузорий, бактерий), красные кровяные тельца, сперматозоиды человека.

XVIII век[править | править вики-текст]

 

Таблица Царства животных из первого издания «Systema Naturae» Карла Линнея(1735).

Параллельное развитие естественной истории с одной стороны и анатомии и физиологии с другой подготовило почву для возникновения биологии. В области естественной истории наиболее значимыми событиями стали публикация «Системы природы» Карла Линнея и «Всеобщей естественной истории» Жоржа Бюффона.

Исследования Альбрехта фон Галлера и Каспара Фридриха Вольфа значительно расширили знания в области эмбриологии животных и развития растений. В то время как Галлер придерживался концепции преформизма, Вольф отстаивал идеи эпигенеза. Наблюдения за ранним развитием цыпленка позволили Вольфу на примере образования трубчатой кишки из первоначально плоского зачатка показать, что развитие нельзя свести к чисто количественному росту без качественных преобразований.

Возникновение дисциплины[править | править вики-текст]


Слово «биология» время от времени появлялось в работах естествоиспытателей и до XIX века, однако смысл его был в то время совершенно иным. Карл Линней, например, называл «биологами» авторов, составлявших жизнеописания ботаников. На рубеже XVIII и XIX веков сразу три автора (Бурдах, Тревиранус, Ламарк) использовали слово «биология» в современном смысле для обозначения науки о общих особенностях живых тел. Готфрид Рейнгольд Тревиранус даже вынес его в заглавие научного труда «Biologie; oder die Philosophie der lebenden Natur» (1802).

Развитие биологии[править | править вики-текст]


XIX век[править | править вики-текст]

 

Набросок родословного древа в «Первой записной книжке о трансмутации видов» Чарльза Дарвина(1837)

Наиболее значимыми событиями первой половины XIX века стали становление палеонтологии и биологических основ стратиграфии, возникновение клеточной теории, формирование сравнительной анатомии и сравнительной эмбриологии, развитие биогеографии и широкое распространение трансформистских представлений. Центральными событиями второй половины XIX века стали публикация «Происхождения видов»Чарльза Дарвина и распространение эволюционного подхода во многих биологических дисциплинах (палеонтологии, систематике, сравнительной анатомии и сравнительной эмбриологии), становление филогенетики, развитие цитологии и микроскопической анатомии, экспериментальной физиологии и экспериментальной эмбриологии, формирование концепции специфического возбудителя инфекционных заболеваний, доказательство невозможности самозарождения жизни в современных природных условиях.

Появление органической химии и экспериментальной физиологии[править | править вики-текст]

Химики того времени усматривали принципиальное различие между органическими и неорганическими веществами, в частности, в таких процессах как ферментация и гниение. Со времен Аристотеля они считались специфически биологическими. Однако Фридрих Вёлер и Юстус Либих, следуя методологии Лавуазье, показали, что органический мир уже тогда часто мог быть проанализирован физическими и химическими методами. В 1828 г. Вёлер химически, т.е. без применения органических веществ и биологических процессов, синтезировал органическое вещество мочевину, представив тем самым первое доказательство для опровержениявитализма. Затем было обнаружено каталитическое действие бесклеточных экстрактов (ферментов) на химические реакции, благодаря чему к концу XIX в. была сформулирована современная концепция ферментов, хотя математическая теория ферментативной кинетики появилась только в начале ХХ века[22].

Физиологи, такие как Клод Бернар, с помощью вивисекции и другими экспериментальными методами исследовали химические и физические свойства живого тела, закладывая основы эндокринологии, биомеханики, учения о питании и пищеварении. Во второй половине XIX в. разнообразие и значимость экспериментальных исследований как в медицине, так и в биологии непрерывно возрастали. Главной задачей стали контролируемые изменения жизненных процессов, и эксперимент оказался в центре биологического образования[23].

XX век[править | править вики-текст]

В XX веке с переоткрытием законов Менделя начинается бурное развитие генетики. К 1920-м гг. не только формируется хромосомная теория наследственности, но и появляются первые работы, ставящие своей задачей интеграцию нового учения о наследственности и теории эволюции. После Второй мировой войны начинается развитие молекулярной биологии. Во второй половине XX века был достигнут значительный прогресс в изучении жизненных явлений на клеточном и молекулярном уровне.

Классическая генетика[править | править вики-текст]

 

Схематическое изображение кроссинговераиз работы Т. Х. Моргана

1900 г. ознаменовался «переоткрытием» законов Менделя. Де Фриз и другие исследователи независимо друг от друга пришли к пониманию значимости работ Менделя[24].Вскоре после этого цитологи пришли к выводу, что клеточными структурами, несущими генетический материал, скорее всего являются хромосомы. В 1910—1915 гг. Томас Хант Морган и его группа, работавшая на плодовой мушке дрозофиле, разработала «менделевскую хромосомную теорию наследственности»[25]. Следуя примеру Менделя, они исследовали явление сцепления генов с количественной точки зрения и постулировали, что в хромосомах гены расположены линейно, как бусы на нитке. Они начали создавать карты генов дрозофилы, которая стала широко используемым модельным организмом сначала для генетических, а затем и молекулярно-биологических исследований[26].

Де Фриз пытался соединить новую генетическую теорию с теорией эволюции. Он первым предложил термин мутация для изменений генов. В 1920—1930-х годах появилась популяционная генетика. В работах Фишера,Холдейна и других авторов теория эволюции, в конце концов, объединилась с классической генетикой в синтетической теории эволюции[27].

Во второй половине ХХ века идеи популяционной генетики оказали значительное влияние на социобиологию и эволюционную психологию. В 1960-х годах для объяснения альтруизма и его роли в эволюции через отбор потомков, появилась математическая теория игр. Дальнейшей разработке подверглась и синтетическая теория эволюции, в которой появилось понятие о дрейфе генов и других процессах, важных для появления высокоразвитых организмов[28], которая объясняла причины быстрых эволюционных изменений в исторически короткое время, ранее составлявших базу для «теории катастроф»[29]. В 1980 г. Луис Альварес предложил метеоритную гипотезу вымирания динозавров[30]. Тогда же в начале 1980х годов были статистически исследованы и другие явления массового вымирания в истории земной жизни[31].

Биохимия[править | править вики-текст]

К концу XIX в. были открыты основные пути метаболизма лекарств и ядов, белка, жирных кислот и синтеза мочевины[32]. В начале ХХ в. началось исследование витаминов. Улучшение техники лабораторных работ, в частности, изобретениехроматографии и электрофореза стимулировало развитие физиологической химии, и биохимия постепенно отделилась от медицины в самостоятельную дисциплину. В 1920-х — 1930-х годах Ханс Кребс, Карл и Герти Кори начали описание основных путей метаболизма углеводов: цикла трикарбоновых кислот, гликолиза, глюконеогенеза. Началось изучение синтеза стероидов и порфиринов. Между 1930ми и 1950ми годами Фриц Липман и другие авторы описали роль аденозинтрифосфата как универсального переносчика биохимической энергии в клетке, а также митохондрий как её главного источника энергии. Эти традиционно биохимические области исследования продолжают развиваться до сих пор[33].

Происхождение молекулярной биологии[править | править вики-текст]

 

Уэнделл Мередит Стэнли в 1935 г. опубликовал эту фотографию кристалловвируса табачной мозаики. Они представляют собой чистыенуклеопротеиды, что убедило многих биологов в том, что наследственностьдолжна иметь физико-химическую природу.

В связи с появлением классической генетики многие биологи, в том числе, работающие в области физико-химической биологии, пытались установить природу гена. Для этой цели Фонд Рокфеллера учредил несколько грантов, а чтобы обозначить задачу, глава научного отдела Фонда Уоррен Уивер ещё в 1938 г. использовал термин молекулярная биология. Он и считается автором наименования этой области биологии[34].

Как и биохимия, смежные дисциплины бактериология и вирусология (позже объединенные в виде микробиологии) в то время бурно развивались на стыке медицины и других естественных наук. После выделения бактериофага начались исследования вирусов бактерий и их хозяев[35]. Это создало базу для применения стандартизированных методов работы с генетически однородными микроорганизмами, которые давали хорошо воспроизводимые результаты, и позволило заложить основы молекулярной генетики.

Кроме микроорганизмов объектами генетических экспериментов стали мушка дрозофила, кукуруза и хлебная плесень, нейроспора густая, что позволило применять также методы биохимии, а появлениеэлектронного микроскопа и высокоскоростных центрифуг позволило пересмотреть даже само понятие «жизнь». Понятие о наследственности у вирусов, воспроизведение внеядерных нуклеопротеиновых структур усложнили ранее принятую теорию менделевских хромосом[36].

Информация о работе Развитие биологии