Развитие биологии

Автор работы: Пользователь скрыл имя, 14 Октября 2014 в 19:01, реферат

Краткое описание

Наиболее значимыми событиями первой половины XIX века стали становление палеонтологии и биологических основ стратиграфии, возникновение клеточной теории, формирование сравнительной анатомии и сравнительной эмбриологии, развитие биогеографии и широкое распространение трансформистских представлений. Центральными событиями второй половины XIX века стали публикация «Происхождения видов»Чарльза Дарвина и распространение эволюционного подхода во многих биологических дисциплинах (палеонтологии, систематике, сравнительной анатомии и сравнительной эмбриологии), становление филогенетики, развитие цитологии и микроскопической анатомии, экспериментальной физиологии и экспериментальной эмбриологии, формирование концепции специфического возбудителя инфекционных заболеваний, доказательство невозможности самозарождения жизни в современных природных условиях.

Вложенные файлы: 1 файл

Наиболее важные события XVII века.docx

— 37.45 Кб (Скачать файл)

В 1941 г. Бидл и Тейтем сформулировали свою гипотезу «один ген — один фермент». В 1943 г. Освальд Эйвери, продолжая работу, начатую Фредериком Гриффитом, показал, что генетическим материалом в хромосомах является не белок, как думали ранее, а ДНК. В 1952 г. этот результат был подтвержден в эксперименте Херши — Чейз, и это был лишь один из многих важных результатов, достигнутых так называемой фаговой группой Дельбрюка. Наконец, в 1953 г. Уотсон и Крик, основываясь на работе Мориса Уилкинса и Розалинды Франклин, предложили свою знаменитую структуру ДНК в виде двойной спирали. В своей статье «Molecular structure of Nucleic Acids» («Молекулярная структура нуклеиновых кислот») они заявили: «От нашего внимания не укрылось то, что специфическое спаривание, которое мы постулировали, одновременно позволяет сделать предположение о механизме копирования генетического материала»[37]. Когда через несколько лет механизм полуконсервативной репликации был подтвержден экспериментально, большинству биологов стало ясно, что последовательность оснований в нуклеиновой кислоте каким-то образом определяет и последовательность аминокислотных остатков в структуре белка. Но идею о наличии генетического кода сформулировал не биолог, а физик Георгий Гамов.

Развитие биохимии и молекулярной биологии во второй половине ХХ века[править | править вики-текст]

Расшифровка генетического кода заняла несколько лет. Эта работа была выполнена главным образом Ниренбергом и Кораной и закончена к концу 1960-х годов[38]. Тогда же Перуц и Кендрю из Кембриджа[39] впервые применили рентгеноструктурный анализ в сочетании с новыми возможностями вычислительной техники для исследования пространственной структуры белков[40]. Жакоб и Моно из Института Пастера исследовали строение lac оперона и открыли первый механизм регуляции генов. К середине 1960-х годов основы молекулярной организации метаболизма и наследственности были установлены, хотя детальное описание всех механизмов только начиналось[41][42]. Методы молекулярной биологии быстро распространялись в другие дисциплины, расширяя возможности исследований на молекулярном уровне[43]. Особенно это было важно для генетики, иммунологии, эмбриологии и нейробиологии, а идеи о наличии «генетической программы» (этот термин был предложен Жакобом и Моно по аналогии с компьютерной программой) проникли и во все остальные биологические дисциплины[44].

 

Полученные генноинженернымиметодами линии бактерииEscherichia coli — важнейший инструмент современнойбиотехнологии и многих других областей биологии.

В иммунологии в связи с достижениями молекулярной биологии появилась теория клональной селекции, которую развивали Ерне и Бёрнет[45]. В биотехнологии появление генной инженерии, начиная с 1970-х годов, привело к появлению широкого спектра продуцентов новых продуктов, в частности, лекарственных препаратов, таких как треонин и инсулин.

Генетическая инженерия основана прежде всего на применении техники рекомбинантных ДНК, то есть таких молекул ДНК, которые искусственно перестроены в лаборатории путём рекомбинации их отдельных частей (генов и их фрагментов). Для разрезания ДНК применяют специальные ферменты рестриктазы, которые были открыты в конце 1960-х годов. Сшивание кусков ДНК катализирует другой фермент, лигаза. Так можно получить и ввести в бактерии ДНК, содержащую, например, ген резистентности к определённому антибиотику. Если бактерия, получив рекомбинантную ДНК, переживет трансформацию, она начнет размножаться на среде, содержащей данный антибиотик, и это будет обнаружено по появлению колоний трансгенного организма[46].

Принимая во внимание не только новые возможности, но и потенциальную угрозу от применения таких технологий (в частности, от манипуляций с микроорганизмами, способными переносить гены вирусного рака) научное сообщество ввело временный мораторий на научно-исследовательские работы с рекомбинантными ДНК до тех пор, пока в 1975 г на специальной конференции не были выработаны рекомендации по технике безопасности при такого рода работах[47]. После этого наступил период бурного развития новых технологий.

 

Штатив амплификатора, устройства, позволяющего проводить полимеразную цепную реакцию одновременно в 48 препаратах.

К концу 1970-х годов появились методы определения первичной структуры ДНК, химического синтеза коротких фрагментов ДНК (олигонуклеотидов), введения ДНК в клетки человека и животных (трансфекция)[48]. Чтобы работать с генами человека и животных, необходимо было разобраться с различиями в устройстве генов прокариот и эукариот. Эта задача была в целом решена благодаря открытию сплайсинга[49].

К 1980-м годам определение первичных последовательностей белков и нуклеиновых кислот позволило использовать их как признаки для систематики и особенно кладистики; так появилась молекулярная филогенетика. К 1990 г на основании сравнительного анализа нуклеотидных последовательностей 16S рРНК Карл Вёзе предложил новую систему живых существ: царство монер было разделено на два домена эубактерий и архей, а остальные четыре царства (протист, грибов, растений и животных) — объединены в один домен эукариот[50].

Появление в 1980-х годах техники ПЦР значительно упростило лабораторную работу с ДНК и открыло возможность не только для открытия новых ранее неизвестных генов, но и для определения всей нуклеотидной последовательности целых геномов, то есть для исчерпывающего описания структуры всех генов организма[51]. В 1990-х годах эта задача была в целом решена в ходе выполнения международного проекта «Геном человека»[52].

 


Информация о работе Развитие биологии