Автор работы: Пользователь скрыл имя, 06 Ноября 2011 в 21:10, реферат
Трансляцией называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).
Механизм
Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбу
Кокшетауский Государственный Университет
им.Шокана
Уалиханова
РЕФЕРАТ
ТЕМА:ТРАНСЛЯЦИЯ.
ТРАНСКРИПЦИЯ.
Выполнила:Игнатьева.Т.
Проверила:Таутова.Е.Н
Кокшетау 2011
Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон ACC, а к этой тРНК будет присоединяться только аминокислота глицин).
Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.
Процесс трансляции разделяют на
Поскольку каждый кодон содержит три нуклеотида, один и тот же генетический текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов), то есть в трех разных рамках считывания. За некоторыми интересными исключениями, значимой является информация, закодированная только в одной рамке считывания. По этой причине крайне важным для синтеза белка рибосомой является её правильное позиционирование на стартовом AUG-кодоне — инициация трансляции.
Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.
Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, сокращённо IF; эукариотические инициаторные факторы обозначают eIF, от англ. eukaryotes).
Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.
Малая рибосомная субъединица (30S) прокариот, если она не вовлечена в данный момент в трансляцию, существует в комплексе с инициаторными факторами IF1, IF3, и, в некоторых случаях, IF2. Рассмотрим основные функции этих белков:
Комплекс 30S субчастицы с инициаторными факторами способен узнавать специальные последовательности мРНК, так называемые участки связывания рибосомы (англ. RBS — ribosomt-binding site). Эти участки содержат, во-первых, инициаторный AUG, и, во-вторых, специальную последовательность Шайна-Дальгарно с которой комплементарно связывается рибосомная 16S РНК. Последовательность Шайн-Дальгарно служит для того, чтобы отличать инициаторный AUG от внутренних кодонов, кодирующих метионин. После того, как 30S-субъединица связалась с мРНК к ней привлекается инициаторная аминоацил-тРНК и IF2, если они еще не были включены в комплекс. Затем присоединяется 50S-субчастица, происходит гидролиз ГТФ и диссоциация инициаторных факторов. Собранная рибосома начинает синтезировать полипептидную цепь.
У эукариот существуют два механизма нахождения рибосомой стартового AUG: кэп-зависимый (сканирующий) и кэп-независимый (внутренняя инициация).
Также у эукариот возможна реинициация трансляции, когда после окончания трансляции рибосома с белковыми факторами не диссоциирует от мРНК, а перескакивает с 3' на 5' конец мРНК и начинает инициацию ещё раз. Такое возможно благодаря замкнутой кольцевой форме мРНК в цитоплазме.
В отличие от прокариот, инициация трансляции у которых обеспечивается лишь тремя белковыми факторами, трансляция подавляющего большинства мРНК эукариот, содержащих 5'-кэп и 3' поли(А)-хвост, требует участия, по крайней мере, 13 общих эукариотических факторов инициаци, представленных 31 полипептидом. Инициация трансляции включает события между диссоциацией рибосомы во время терминации в предыдущем цикле трансляции и сборкой рибосомы, готовой к элонгации, на старт-кодоне мРНК. Во время инициации аппарат трансляции решает следующие задачи:
Диссоциация рибосомных субъединиц в конце терминации — активный процесс, в котором участвуют eIF, а также факторы элонгации и терминации. Антиассоциация уже диссоциированных субъединиц обеспечивается eIF и служит для предотвращения преждевременного объединения рибосомных субъединицГлавная роль в выполнении этой задачи принадлежит eIF3, мультисубъединичному фактору, состоящему из 13 различных субъединиц (общей молекулярной массой 800 кДа) у млекопитающих, 11 субъединиц у растений и шести субъединиц у дрожжей Saccharomyces cerevisiae. eIF3 связывается с 40S субъединицей рибосомы (40S) посредством своей j-субъединицы, которая, в свою очередь, взаимодействует с «каркасной» (scaffolding) b-субъединицей и предотвращает ассоциацию 40S с 60S рибосомной субъединицей (60S). Эти активности eIF3 зависят от его взаимодействия с eIF1 и тройственным комплексом eIF2/GTP/Met-tRNAiMet Связывание eIF1 с 40S является кооперативным с eIF3, так же как и связывание eIF1 с eIF1А (гомологом бактериального IF1). Таким образом, eIF1А, вероятно, также участвует в антиассоциации, по крайней мере, непрямым образом.
Этот этап включает в себя следующие процессы:
В ходе процесса (а), метионил-тРНК-синтетаза взаимодействует как с акцепторным концом тРНК, так и с антикодоном.
Процесс (б) у растений и дрожжей осуществляется с помощью посттранскрипционной модификации tRNAiMet, которая делает её отличной от элонгаторной метионин-специфичной тРНК с помощью присоединения 2'-О-фосфорибозила к рибозе нуклеотида А64. У позвоночных процесс (б) осуществляется путём дискриминации между специфическими особенностями нуклеотидных последовательностей tRNAiMet и элонгаторной метиониновой тРНК.
Схема РНК-связывающих участков рибосомы. Буквами обозначены участки связывания тРНК. А — аминоацил-тРНК-связывающий участок, Р — пептидил-тРНК-связывающий участок, Е — участок отсоединения тРНК от рибосомы (англ. exit).