Физиология возбудимых тканей

Автор работы: Пользователь скрыл имя, 18 Октября 2012 в 18:36, методичка

Краткое описание

Биологические системы – организмы, органы, ткани и клетки – могут находиться в двух состояниях – покоя и активности.
Состояние покоя биосистемы можно наблюдать при отсутствии специальных раздражающих воздействий. Оно характеризуется относительным постоянством физиологических параметров и отсутствием проявлений специфических функций.

Содержание

1. ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ
1.1 Раздражимость и возбудимость живых систем
1.2 «Животное электричество». Опыты Гальвани и Матеучи
1.3 Мембранный потенциал покоя. Метод регистрации, механизмы происхождения и поддержания
1.4 Потенциал действия. Электрографические, электрохимические и функциональные проявления.
1.4.1. Электрографические проявления ПД
1.4.2. Электрохимические проявления ПД
1.4.3. Закон «все или ничего»
1.4.4. Функциональные проявления ПД
1.5 Парабиоз. Оптимум и пессимум раздражения
2 НЕРВНОЕ ВОЛОКНО
2.1. Понятие и классификация нервных волокон
2.2 Свойства нервных волокон
2.3 Механизмы проведения возбуждения
3 СИНАПС
3.1 Классификация синапсов
3.2 Этапы и механизмы синаптической передачи в химических синапсах
3.3 Свойства синапсов
4 СЕНСОРНЫЕ РЕЦЕПТОРЫ
4.1 Виды и свойства рецепторов
4.2 Кодирование свойств раздражителей в рецепторах
4.3 Понятие о рецептивном поле и рефлексогенных зонах

Вложенные файлы: 1 файл

2. Физиология возбудимых клеток.doc

— 316.00 Кб (Скачать файл)

• Вторично активный транспорт соединяет транспорт двух или нескольких растворенных веществ вместе. Во вторично активном транспорте энергия используется для разработки благоприятной электрохимической движущей силы для одного растворенного вещества, которое затем используется для возможности перевозки других растворенных веществ (например, направленный внутрь Na+ градиент используется для поглощения глюкозы из кишечника). Котранспорт (симпорт) объединяет движение двух или более растворов в одном направлении. Пример Na+-переносчики включают котранспорт Na+ / глюкозы в кишечнике. Обменник (антипорт) объединяет движение двух растворенных веществ в противоположном направлении. Пример Na+-переносчики включают Na+/Ca2+ и Na+ /H+ обмен, которые являются важными для поддержания низких внутриклеточных [Ca2+] и [H+], соответственно.

  • Везикулярный транспорт. Движение макромолекул происходит в ограниченных мембраной пузырьках; макромолекулы проникают в клетки путем эндоцитоза и выходят из клеток путем экзоцитоза. Эндоцитоз можно описать как прием внеклеточного материала для формирования эндоцитозных пузырьков внутри клетки. Есть три типа эндоцитоза: 1) Пиноцитоз это употребление малых частиц из ECF, он происходит в большинстве клеток. 2) Фагоцитоз это поглощение крупных частиц (например, микроорганизмов), которое происходит в специализированных иммунных клетках. 3) Рецептор-опосредованный эндоцитоз это поглощение специфических молекул, он происходит на специализированных областях мембраны клатриновых ямах (например, поглощение холестерина связан с липопротеинами низкой плотности). Экзоцитоз это экспорт растворимых белков в межклеточное пространство. Такие белки синтезируются в клетке и упаковывается во внутриклеточные везикулы. Когда пузырьки сливаются с плазматической мембраной, растворимые белки выделяются и мембраны пузырьков включаются в плазматическую мембрану.

 

1.2 «Животное  электричество». Опыты Гальвани и Матеучи

 

В конце XVIII в. (1786) профессор анатомии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целенаправленным исследованиям биоэлектрических явлений. В первом опыте, подвешивая с помощью медного крючка на железной решетке препарат задних лапок лягушек со снятой кожей, ученый обнаружил, что всякий раз, когда мышцы касались решетки, они отчетливо сокращались. Л. Гальвани высказал предположение о том, что сокращение мышц является следствием воздействия на них электричества, источником которого выступают «животные ткани» — мышцы и нервы.

Однако другой итальянский исследователь  — физик и физиолог Вольта — оспорил это заключение. По его мнению, причиной сокращения мышц был электрический ток, возникающий в области контакта двух разнородных металлов: меди и железа (гальваническая пара) — с тканями лягушки. С целью проверки своей гипотезы Л. Гальвани поставил второй опыт, в котором нерв нервно-мышечного препарата набрасывался на мышцу стеклянным крючком так, чтобы он касался поврежденного и неповрежденного ее участков. В этом случае мышца также сокращалась. Во втором опыте были получены абсолютные доказательства существования «животного электричества».

Окончательное доказательство существования электрических явлений в живых тканях было получено в опыте Матеуччи, в котором один нервно-мышечный препарат возбуждался током, а биотоки сокращающейся мышцы раздражали нерв второго нервно-мышечного препарата.

 

1.3 Мембранный  потенциал покоя. Метод регистрации,  механизмы происхождения и поддержания

 

Для исследования биоэлектрических явлений в клетках применяют микроэлектроды (стеклянные пипетки, наполненные электролитом, с очень тонким – 0,5 мкм – кончиком). В таком микроэлектроде электролит играет роль проводника тока, а стекло – изолятора. Когда кончик микроэлектрода находится в межклеточной жидкости, между ним и индифферентным электродом (находящимся там же) разность зарядов равна нулю. Если микроэлектрод ввести внутрь клетки, то регистрирующая установка мгновенно покажет некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости.

При выведении кончика  микроэлектрода из клетки возвратным движением или прокалывание ее насквозь разность потенциалов между электродами  скачкообразно исчезает. Разность зарядов между внутренней и наружной сторонами мембраны клетки называют мембранным потенциалом (МП). В покое эта величина варьирует от -9 до -100 мВ в зависимости от вида ткани и называется мембранным потенциалом покоя (МПП). Следовательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение – гиперполяризацией, восстановление исходного значения – реполяризацией мембраны.

МПП играет исключительно  важную роль в жизнедеятельности  самой клетки и организма в  целом. В частности, он составляет основу возбуждения и переработки информации нервной клеткой, обеспечивает регуляцию деятельности внутренних органов и опорно-двигательного аппарата посредством запуска процессов возбуждения и сокращения в мышце. Нарушение процессов возбуждения в кардиомиоцитах ведет к остановке сердца.

Согласно мембранно-ионной теории (Бернштейн, Ходжкин, Хаксли, Катц) непосредственной причиной формирования МПП является неодинаковая концентрация анионов и катионов внутри и вне клетки.

Мембранная теория происхождения МПП

В состоянии покоя  клеточная мембрана хорошо проницаема для ионов K+ (в ряде клеток  и для Cl-), менее проницаема для ионов Na+ и практически непроницаема для внутриклеточных белков и других органических ионов. Ионы K+ диффундируют из клетки по концентрационному градиенту, а непроникающие анионы белков остаются в цитоплазме, обеспечивая появление разности потенциалов (внутри клетки заряд  «-»  снаружи «+»).

Возникающая разность потенциалов  препятствует выходу K+ из клетки и при некотором ее значении наступает равновесие между выходом K+ по концентрационному градиенту и входом этих катионов по возникшему электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, называется равновесным потенциалом. Его величина может быть рассчитана по уравнению Нернста.

где Ек+ - равновесный потенциал для К+; R – газовая постоянная; T – абсолютная температура; F – число Фарадея; [K+нар] и [K+внутр] – наружная и внутр. концентрации K+.

Наряду с потоками ионов К+, являющихся основными факторами мембранного потенциала, через мембрану нервной клетки в значительно меньшем количестве движутся ионы Na+, Cl- или Cа2+. Вклад каждого из равновесных потенциалов в величину МПП опрделяется проницаемостью клеточной мембраны для каждого из этих производится по уравнению Гольдмана.

где Em – мембранный потенциал, Р — проницаемость мембраны для соответствующих ионов. Ее часто выражают в относительных величинах, принимая Рк за единицу. Для мембраны аксона кальмара в покое отношение Рк: РNa: РCl = 1 : 0,04 : 0,45.

Перечисленные факторы  составляют ионную компоненту МПП, которая  зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая – «метаболическая» компонента обусловлена активностью Na/К-насоса, который представляет собой белковое образование в мембране клетки, выполняющее следующую работу: выкачивание из цитоплазмы с использованием энергии АТФ 3 ионов Na+ в обмен на 2 иона К+, которые возвращаются в клетку. Таким образом, Na/К-насос оказывает двоякое влияние на МПП: поддерживает концентрационные градиенты между цитоплазмой и внешней средой и оказывает прямое влияние на МПП в силу своей электрогенности.

 

1.4 Потенциал  действия. Электрографические, электрохимические  и функциональные проявления

 

При подаче внутрь нервной  клетки электрического тока будет происходить  кратковременное изменение МП, по форме и силе соответствующее толчку тока, но со сглаженным передним и задним фронтами, что определяется емкостью мембраны. Это электротонический потенциал (физический электротон). Возникающая в  области приложения анода (его заряд «+») гиперполяризация мембраны называется анэлектротоном, уменьшение мембранного потенциала в области приложения катода (заряд «-») – катэлектротоном.

При толчке входящего тока (т.е. с анода) любой величины (по рисунку - более 1,5В) образуется только электротонический потенциал, а затем МПП восстанавливается.

При подаче более сильного выходящего тока (с катода) возникает эффект субпорогового раздражения: к электротоническому потенциалу (ЭП) самопроизвольно присоединяется дополнительная деполяризация, называемая локальным ответом (ЛО). Этот потенциал не распространяется (протекает локально). Описанные выше эффекты – частичная (неполная) деполяризация.


При дальнейшем усилении стимула и достижении порога раздражения, т.е. критического уровня деполяризации (КУД), возникает потенциал действия (ПД). В естественных условиях ПД возникает локально, а затем распространяется (проводится) по мембране. Это полная деполяризация.


 

1.4.1. Электрографические  проявления ПД

 

Начиная от изолинии (1-2), в ПД выделяют предспайк (2-3), восходящую (3-5) и нисходящую (5-7) части спайка (3-7), причем соответствующая положительным значениям МП часть называется овершут (4-6), а вершина пика – точка инверсии (смены) заряда (5). Далее следуют отрицательный (7-8) и положительный (8-9) следовые потенциалы.

 

 

1.4.2. Электрохимические  проявления ПД

 

Причиной развития ПД является вызываемое критической деполяризацией открытие Na- и, несколько позже, К-каналов, что приводит к движению через них соответствующих ионов по электрохимическому градиенту. Эти каналы называются потенциалзависимыми, т.к. их состояние зависит от поляризации мембраны (или ее потенциала).

В Na-каналах  выделяют активационные (А) и инактивационные (И) ворот. Электрическое поле МПП обеспечивает закрытое состояние А-ворот и открытое состояние И-ворот. Это состояние покоя и готовности к возбуждению. Даже относительно небольшой сброс мембранного потенциала (частичная деполяризация) открывает А-ворота этих каналов и выводит клетку из состояния покоя. Одновременно начинается закрытие И-ворот. Но так как скорость срабатывания А-ворот выше, это приводит к кратковременному открытию Na-каналов, то есть к развитию нартиевого тока внутрь клетки и возникновению восходящей фазы пика ПД (при слабой деполяризации - возникновению ЭП и, возможно, ЛО). Это ведет к дальнейшей деполяризации мембраны, что, в свою очередь, увеличивает число открытых Na-каналов.

При достижении определенного  уровня деполяризации – уровня КУД, зависящего отчисла открытых Na-каналов, дальнейший процесс уменьшения МП идет самопроизвольно и практически мгновенно до определенного уровня (вершины пика), после чего:

1) снижается химический  градиент для ионов Na+ (т.е. уменьшается сила, толкающая Na+ внутрь клетки за счет разности концентраций);

2) исчезает электрический градиент для ионов Na+ (т.к. внутренняя сторона мембраны приобретает положительный заряд);

3) начинается инактивация Na-каналов (закрытие И-ворот);

4) увеличивается проницаемость мембраны для ионов К+ (открываются дополнительные К+-каналы и К+ движется по электрохимическому градиенту из клетки).

Несколько запаздывающий по времени выход ионов К+ участвует в создании нисходящей фазы пика – реполяризации и приводит к восстановлению МП до величины МПП. Реполяризации также способствуют процессы активного транспорта ионов Na+ из клетки. Эти два процесса сначала идут быстро (быстрая реполяризация, нисходящая часть спайка), а затем медленно (медленная реполяризация, отрицательный следовый потенциал).

В последействии ПД может  возникнуть гиперполяризация (положительный следовый потенциал), т.к. калиевая прницаемость мембраны остается некоторое время повышенной, что продолжает снижать МП после достижения уровня МПП. Медленное восстановление МПП осуществляется работой Na/К-насосов.


 

1.4.3. Закон «все или ничего»

 

Важным свойством электрических сигналов является то, что они фактически идентичны во всех нервных клетках организма независимо от того, запускают ли они движение, передают ли информацию о цветах, формах или болезненных стимулах, или соединяют различные области мозга. Вторым важным свойством сигналов является то, что они настолько одинаковы у разных животных, что даже умудренный опытом исследователь не способен точно отличить запись потенциала действия от нервного волокна кита, мыши, обезьяны или профессора. В этом смысле потенциалы действия могут считаться стереотипными единицами. Хотя, утверждение, что все потенциалы действия одинаковы, равносильно утверждению, что все дубы одинаковы. Таким образом, форма и длительность потенциала действия имеют постоянную величину, т.к. он возникает по ионному механизму. При этом изменения сигналов различного характера кодируются лишь изменениями частоты ПД или количеством ПД, но не формой самого ПД. Закон «все или ничего» можно сформулировать следующим образом: ПД либо не возникает вообще (при подпороговых значениях раздражающего тока возбуждение носит локальный характер и не распространяется за пределы зоны воздействия), либо имеет постоянные характеристики (при пороговых и надпороговых раздражениях).

 

1.4.4. Функциональные проявления ПД

 

Во время протекания ПД состояние клеточной мембраны изменяется (изменяются МП, состояние ионных каналов, концентрации ионов), а клеточная мембрана, в свою очередь, обусловливает возбудимость клетки. Поэтому функциональные проявления ПД связаны с изменением возбудимости клеточной мембраны.

Информация о работе Физиология возбудимых тканей