Автор работы: Пользователь скрыл имя, 16 Января 2013 в 22:05, шпаргалка
2. Краткая история систематики растений
5. Методы систематики растений
9. Происхождение высших растений
10. Общая характеристика высших растений и их отличие от водорослей
32.Отдел моховидные (bryophyta)
....
90. Порядок рогозоцветные (пухоукакветныя)- (Typhales)
10. Общая характеристика высших растений и их отличие от водорослей
Высшие растения - это жители наземно-воздушной среды, которая коренным образом отличается от водной среды.
Высшие растения являются листостебельными растениями, многие имеют корни. По этим признакам на латинском языке их называют Cormophyta (от греч. kormos -ствол, стебель, phyton - растение) в отличие от водорослей - Thallophyta (от греч. thallos - слоевище, таллом, phyton - растение).
Органы высших растений имеют сложное строение. Проводящая система у них представлена специальными клетками - т р а х е и д а м и, а также сосудами, ситовидными трубками. Проводящие элементы группируются в закономерные сочетания - сосудисто-волокнистые пучки. У высших растений появляется центральный цилиндр - с т е л а. Сначала центральный цилиндр простой - п р о т о с т е л а (от греч. protos - простой, stela - колонка, столб). Затем появляются более сложные стелы: а к т и н о с т е л а (от греч. actis - луч), п л е к т о с т е л а (от греч. plectos - скручивать, вить), с и ф о н о- с т е л а (от греч. siphon - трубка), а р т р о с т е л а (от греч. arthrus - членистый), д и к т и о с т е л а (от греч. diktyon - сеть), э в с т е л а (от греч. eu - настоящий), а т а к т о с т е л а (от греч. ataktos - беспорядочный).
У высших растений
имеется сложная система
Половые органы высших растений - многоклеточные а н т е р и д и и (мужские) и а р х е г о н и и (женские) - взяли начало, вероятно, от многоклеточных г а м е т а н г и е в водорослей типа диктиоты и эктокорпуса (из бурых водорослей).
Характерной чертой высших растений является чередование поколений в цикле развития - г а м е т о ф и т а (полового) и с п о р о ф и т а (бесполого) и соответствующая смена я д е р н ы х ф а з (г а п л о и д н о й и д и п л о и д н о й). Переход от гаплоидной ядерной фазы к диплоидной происходит при оплодотворении я й ц е к л е т к и с п е р м а т о з о и д о м или с п е р м и е м. И наоборот, переход от диплоидной ядерной фазы к гаплоидной происходит при образовании спор из спорогенной ткани - а р х е с п о р и я путем м е й о з а с редукцией числа хромосом.
9. Происхождение высших растений
Высшие растения,
вероятно, произошли от каких-либо водорослей.
Об этом свидетельствует то, что
в геологической истории
Предполагают, что высшие растения произошли скорее всего от зеленых водорослей, пресноводных или солоноватоводных. Они имели многоклеточные гаметангии, изоморфное чередование поколений в цикле развития.
Первыми наземными растениями, найденными в ископаемом состоянии, были риниофиты (риния, хорнея, хорнеофитон, спорогонитес, псилофит и др.).
После выхода на сушу высшие растения развивались в двух основных направлениях и образовали две большие эволюционные ветви - гаплоидную и диплоидную.
Гаплоидная ветвь эволюции высших растений представлена отделом моховидные (Bryophyta). В цикле развития мхов преобладает гаметофит, половое поколение (само растение), а спорофит, бесполое поколение, редуцирован и представлен спорогоном в виде коробочки на ножке. Развитие моховидных шло в сторону возрастания самостоятельности гаметофита и его постепенного морфологического расчленения, потери самостоятельности спорофита и его морфологического укрощения. Самостоятельной, вполне автотрофной фазой жизненного цикла моховидных стал гаметофит, а спорофит низведен до степени органа гаметофита.
Мхи как представители гаплоидной ветви эволюции высших растений оказались менее жизнеспособными и адаптированными к условиям жизни на Земле. Их распространение связано с наличием свободной капельно-жидкой воды, необходимой не только для ростовых процессов, но и для полового процесса. Этим объясняется их экологическая приуроченность к местам, где имеется постоянное или периодическое увлажнение.
Вторая эволюционная ветвь высших растений представлена всеми остальными высшими растениями.
Спорофит в наземных условиях оказался более жизнеспособным и адаптированным к разнообразным экологическим условиям. Эта группа растений более успешно завоевывала сушу. Спорофит у них часто имеет большие размеры, сложное внутреннее и внешнее строение. Гаметофит, наоборот, претерпел упрощение, редукцию.
У более простых форм (споровые растения) гаметофит еще имеет самостоятельное существование и представлен автотрофным или симбиотрофным заростком (Lycopodiophyta, Equisetophyta, Polypodiophyta), а у разноспоровых представителей этих отделов он значительно упрощен, редуцирован. У более организованных - семенных растений - гаметофит утратил самостоятельный способ жизни и развивается на спорофите, а у покрытосеменных (цветковых) сведен до нескольких клеток.
В новых условиях шло постепенное усложнение наземных растений с преобладанием в цикле развития спорофита. Они дали начало ряду самостоятельных групп (отделов) растений, приспособленных к разнообразным условиям жизни на суше.
В настоящее время высшие растения насчитывают свыше 300 000 видов. Они господствуют на Земле, населяют ее от арктических территорий до экватора, от влажных тропиков до сухих пустынь. Они образуют различные типы растительности - леса, луга, болота, заполняют водоемы.
При всем огромном разнообразии внешнего вида и внутреннего строения все высшие растения сохраняют определенное единство в строении. Высшие растения подразделяют на 9 отделов. Однако они сравнительно легко увязываются между собой, что свидетельствует о единстве происхождения высших растений.
2. Краткая история систематики растений
Еще на заре своей истории человек обратил внимание на огромное разнообразие растительного мира. В процессе хозяйственной деятельности он стремился познать и отличить растения полезные (пищевые, лекарственные и проч.), а также вредные, особенно ядовитые. Очень рано человек стал использовать зерна многих хлебных злаков (пшеница, просо, ячмень), которые найдены при археологических раскопках и относятся к 6-5 тысячелетиям до н. э.
О выращивании пищевых растений и знакомстве человека с лекарственными травами свидетельствуют иероглифы и рисунки на гробницах египетских фараонов (3000 г. до н. э.). Рисунки на древнеегипетских памятниках отражают в первую очередь съедобные, прядильные, лекарственные растения. Об использовании древними народами таких растений, как хлебные злаки, просо, лук, чеснок известно от греческого историка Герадота (484-425 гг. до н. э.). Кукурузу, картофель, табак выращивали древние народы Мексики и Перу.
Описания растений
впервые появляются в древнекитайском
сочинении под названием Шу-
Древнегреческое естествознание отражено в трудах Аристотеля (384-322 гг. до н. э.). Он был крупнейшим натуралистом своего времени. Аристотель интуитивно признавал родство всего живого, и растения он рассматривал как часть природы.
Самой первой известной нам классификацией растений была классификация Теофраста (371-287 гг. до н. э.) - ученого и философа древней Греции. Его настоящее имя Тиртам, а имя Теофраст - божественный оратор - дал ему его учитель - Аристотель.
В основу своей классификации Теофраст положил э к о л о г и ч е с к и й п р и н ц и п, выделяя классификационные группы на основе жизненных форм растений. Теофраст делит все растения на деревья, кустарники, полукустарники и травы, отличает наземную флору, выделяя в ней растения листопадные и вечнозеленые, и водную флору с пресноводными и морскими растениями. Теофраст увязывал данные о растениях с вопросами их практического использования, положил начало у т и л и т а р н о м у направлению в классификации.
Система Теофраста
была первой попыткой экологического
подхода к классификации
Утилитарное направление долгое время было господствующим при изучении растений и их классификации (Плиний Старший, Диоскорид и др.). Ими заканчивается период описательных или практических (утилитарных) классификаций растений.
Период с конца XVI до второй половины XVIII столетия характеризуется появлением ряда и с к у с с т в е н н ы х морфологических систем, или систем, которые строятся на основе какого-либо одного или нескольких признаков.
Период искусственных систем классификации растений начинается с системы итальянского ботаника А. Чезальпино (1519-1603 гг.). В основу классификации он положил принцип строения органов размножения. Растительный мир был разделен им на два отдела: 1) деревья и кустарники, 2) полукустарники и травы. Далее растения группировались в 15 классов на основе строения плодов и числа гнезд и семян в них, а затем выделялись группы меньшего объема - с учетом строения цветка. Особое место в системе Чезальпино занимал 15 класс, куда были отнесены мхи, папоротники, хвощи и грибы. Система Чезальпино, несовершенная с современной точки зрения, была важным этапом в развитии систематики растений.
Швейцарский ботаник Каспар Баугин (1560-1624 гг.) виды растений распределил по признакам подобия в 12 классов.
В классификационной системе английский ботаник Рей (1623-1705 гг.) выделяет отделы растений по числу семядолей и подразделяет их на односемядольные и двусемядольные. В своей системе он принимает во внимание, кроме семян и плодов, форму цветка.
Современник Рея французский ботаник Турнефор (1656-1708 гг.) создал свою систему растений, основанную на форме венчика цветка. Турнефор подразделяет растения на безлепестные и лепестные, а последние - на однолепестные и многолепестные. Он, как и Рей, подразделяет цветки на простые и сложные, на правильные и неправильные; сохранил старое деление на деревья, кустарники и травы.
По форме цветка Турнефор разделил цветковые растения сначала на 14, а затем на 18 классов.
Роль реформатора ботаники сыграл великий шведский ученый Карл Линней (1707-1778 гг.). Он был в числе тех ботаников, которые в XVIII ст. оценили учение Камерариуса о поле у растений. Линней положил это учение в основу своей знаменитой половой системы растений, изложенной им в книгах "Система Природы" (1735), "Основы ботаники" (1736), "Виды растений" (1753) и др. Система Линнея тоже была искусственной, но тем не менее она выгодно отличается от систем Рея, Турнефора и других его предшественников. К. Линней выбрал в качестве основного систематического признака орган размножения, но не плод, как это сделал Чезальпино, а цветок, но не форму цветка, как Турнефор, а строение андроцея.
Система Линнея включает 24 класса растений. В 23 классах представлены растения с цветками, которые отличаются между собой количеством тычинок, их взаимным расположением, одинаковой или различной длиной, распределением полов, а также растения, у которых тычинки срослись со столбиком. В 24 класс Линней отнес "бесцветковые" растения, т.е. не имеющих цветков.
Огромная заслуга К. Линнея перед ботаникой в том, что он впервые ввел бинарную номенклатуру растений: вид растения называют двумя словами - родовым и видовым. Например: вид - ива белая - Salix (родовое название), alba (видовой эпитет) L. (Linneus - фамилия автора названия).
Системой К. Линнея заканчивается период искусственных систем в истории систематики растений.
Во второй половине XVIII столетия во взглядах ботаников очерчиваются значительные изменения. Этому способствовало то, что к этому времени в Европе уже знали много видов растений, которые были собраны в коллекциях научных центров. Описывая эти растения, систематики включали их в определенную классификацию. Каждое растение получало свое название. Более подробно изучались генеративные органы - цветки. Начали применять более совершенные оптические приборы. Систематики понимали, что необходимо переходить на более совершенную систему классификации растений.
В основу создания е с т е с т в е н н о й с и с т е м ы классификации положены принципы сходства растений по совокупности признаков. В естественной системе все растения, начиная с водорослей и грибов и заканчивая высшими цветковыми растениями, располагаются в такой последовательности, что в конце каждого семейства помещались формы, переходные к следующему. При таком размещении выявлялись отношения между группами растений, определялась близость между ними, в результате все разнообразие растений представляло единое целое. Авторами разных естественных систем растений были французский ботаник А. Жюссье (1748-1836 гг.), швейцарский ботаник О. Декандоль (1778-1841 гг.), австрийский ботаник С. Эндлихер (1805-1849 гг.), французский палеоботаник А. Броньяр (1801-1876 гг.) и др.
Авторы естественных систем не могли, однако, подняться до понимания развития органического мира.
Эволюционная теория Ч. Дарвина совершила настоящий переворот во всех областях естествознания, поэтому систематика не могла оставаться на старых позициях. Из науки статичной, которая изучает организмы в современном состоянии, систематика превратилась в науку динамичную, которая ставит своей целью показать филогенез, или происхождение, современных организмов от более простых и развитие их в историческом аспекте. Этим заканчивается второй период истории систематики - период естественных систем и начинается третий - период филогенетических систем.