Механизмы поражения гепатоцитов

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 08:46, курсовая работа

Краткое описание

Печень вовлечена во многие патологические процессы, и ее повреждения вызывают серьезные нарушения метаболизма, иммунного ответа, детоксикации и антимикробной защиты. Печень относится к органам, способным к регенерации после повреждений, благодаря клеточной кооперации, наличию молекулярных механизмов реакции острой фазы и синтезу ряда веществ протекторной природы. Наиболее часто повреждения печени реализуются через химические и иммунологические механизмы. Известно достаточно большое количество веществ - детергентов, разобщителей окислительного фосфорилирования и свободного дыхания, канцерогенов, лекарств и др

Содержание

Введение 3
Глава 1. Механизмы поражения гепатоцитов 4
1.1 Химическое повреждение 4
1.2 Иммунные механизмы гепатотоксичности 7
1.3 Механизм гепотапротекторного действия различных действующих веществ растений 10
Глава 2. Лекарственные растения обладающие гепатопроторным действием 15
2.1 Лекарственные растения, содержащие флаволингнаны 15
2.2 Лекарственные растения, содержащие флавоноиды 22
2.3 Лекарственные растения, содержащие жирорастворимые витамины 27
Заключение 35
Список литературы 37

Вложенные файлы: 1 файл

курсовая.doc

— 263.50 Кб (Скачать файл)

Содержание

Введение 3

Глава 1. Механизмы  поражения гепатоцитов 4

1.1 Химическое повреждение 4

1.2 Иммунные механизмы  гепатотоксичности 7

1.3 Механизм гепотапротекторного  действия различных действующих  веществ растений 10

Глава 2. Лекарственные  растения обладающие гепатопроторным действием 15

2.1 Лекарственные растения, содержащие флаволингнаны 15

2.2 Лекарственные растения, содержащие флавоноиды 22

2.3 Лекарственные растения, содержащие жирорастворимые витамины 27

Заключение 35

Список литературы 37

 

Введение

Печень вовлечена во многие патологические процессы, и  ее повреждения вызывают серьезные  нарушения метаболизма, иммунного  ответа, детоксикации и антимикробной  защиты. Печень относится к органам, способным к регенерации после  повреждений, благодаря клеточной кооперации, наличию молекулярных механизмов реакции острой фазы и синтезу ряда веществ протекторной природы. Наиболее часто повреждения печени реализуются через химические и иммунологические механизмы. Известно достаточно большое количество веществ - детергентов, разобщителей окислительного фосфорилирования и свободного дыхания, канцерогенов, лекарств и др. Химическое повреждение печени могут вызывать природные вещества и ксенобиотики, включая лекарственные препараты. Известно, что печень является мишенью для проявления токсичности ряда лекарственных препаратов, поскольку именно в этом органе происходит метаболизм ксенобиотиков. Гепатоциты функционируют в условиях высоких концентраций реактивных и токсических форм лекарственных препаратов.

Целью курсовой работы было изучить характеристику лекарственных растений, обладающих гепатопротекторным действием. Для достижения поставленной цели были выдвинуты следующие задачи:

  • изучить механизмы поражения гепатоцитов;
  • изучить фармакопейные лекарственные растения, применяющиеся при заболеваниях печени и выделить из них те, что обладают гепатопротекторным действием;
  • рассортировать растения, обладающие гепатопротекторным действием по группам, в соответствии с основным действующим веществом;
  • охарактеризовать растения, обладающие гепатопротекторным действием.

 

Глава 1. Механизмы поражения  гепатоцитов

1.1 Химическое  повреждение

Известно достаточно большое количество веществ - детергентов, разобщителей окислительного фосфорилирования и свободного дыхания, канцерогенов, лекарств и др. Химическое повреждение печени могут вызывать природные вещества и ксенобиотики, включая лекарственные препараты. Известно, что печень является мишенью для проявления токсичности ряда лекарственных препаратов, поскольку именно в этом органе происходит метаболизм ксенобиотиков. Гепатоциты функционируют в условиях высоких концентраций реактивных и токсических форм лекарственных препаратов. Последние могут быть токсичными в нативной форме или таковыми становятся в процессе их метаболизма. В процессе обезвреживания ксенобиотиков описывают две фазы:

1) метаболизм, то есть  введение полярных групп с  помощью цитохрома Р450-гидроксилазной  системы;

2) конъюгация молекул  с водорастворимыми лигандами.  Оба процесса служат для элиминации  чужеродных компонентов их внутренней среды организма.

Процессы конъюгации катализируют чаще всего УДФ-глюкуронилтрансфераза, глутатион-S-трансфераза. Глюкуронизация является основным видом конъюгации при детоксикации веществ. Сульфатация, как правило, обеспечивает снижение токсичности и ускорение клиренса ксенобиотиков. Глутатион-S-трансферазная реакция важна для нестабильных электрофильных молекул. Микросомальная глутатион-S-трансфераза тесно связана с цитохром Р450-системой, что служит для быстрой инактивации активных метаболитов, образуемых при метаболизме ксенобиотиков. Метаболизм лекарств локализован не только в гепатоцитах, но также в синусоидальных эндотелиальных клетках, способных к превращениям ксенобиотиков. Ряд лекарств проявляет селективную токсичность по отношению к этим клеткам по сравнению с гепатоцитами. Эта селективность связана с более слабыми защитными механизмами синусоидальных эндотелиальных клеток к действию ксенобиотиков.

В настоящее время  известны 5 основных механизмов, ведущих  к гибели клеток:

1) повреждения плазматической мембраны и нарушения цитоскелета;

2) дисфункция митохондрий;

3) утрата внутриклеточного  ионного гомеостаза;

4) активация ферментов  деградации веществ;

5) окислительный стресс  в результате несоответствия  прооксидантных и антиоксидантных  ресурсов клетки.

1. Повреждения плазматической  мембраны. Ксенобиотики могут оказывать  прямое и опосредованное действие  на цитоскелет гепатоцитов. Это  сопровождается нарушениями структуры  с образованием разрывов в  мембране и может непосредственно  вести к гибели клетки. Плазматическая мембрана доступна для непосредственного повреждения экстрацеллюлярными детергентами или порообразующими белками (система комплемента, перфорин цитотоксических лимфоцитов, альфа-токсин бактерий). Этот процесс сопровождается выходом ферментов цитозоля (аспартатаминотрансфераза, лактатдегидрогеназа и др.) в кровь. Повреждения плазматической мембраны являются этапом некротического механизма гибели клеток. К сожалению, тонкие механизмы этого эффекта остаются неизвестными. Повреждения липидного бислоя мембран, сопряженные с изменениями ее вязкости, как правило, связаны с активацией перекисного окисления липидов и истощением запасов АТФ.

2. Нарушения функции  митохондрий. Повреждения механизмов  окислительного фосфорилирования  в митохондриальной мембране ведут к уменьшению АТФ, и затем гибели клеток. Истощение резервов АТФ является причиной клеточной гибели при аноксии/гипоксии, окислительном стрессе и действии токсических ксенобиотиков. Стимуляция АТФ-потребляющих метаболических путей также ведет к истощению резерва АТФ. Резкое повышение проницаемости внутренней мембраны митохондрий для электролитов и низкомолекулярных молекул обычно сочетается с клеточным некрозом независимо от внутренней концентрации АТФ. Неспецифическое повреждение внутренней митохондриальной мембраны чаще всего вызывается активацией перекисного окисления липидов или действием фосфолипазы.

3. Внутриклеточный гомеостаз.  Утрата внутриклеточного ионного  гомеостаза - это наиболее ранний  признак цитотоксичности ксенобиотика. Повреждение клетки сопряжено с повышением концентрации ионов натрия и кальция и уменьшением ионов калия в цитозоле. Хорошо известно, что в норме существует 1000-кратный градиент между экстрацеллюлярным (1-2 ммоль/л) и внутриклеточным (0,1-1,0 мкмоль/л) содержанием ионов кальция. Повышение концентрации ионов кальция происходит из внутриклеточных депо в эндоплазматическом ретикулуме и за счет повышения проницаемости плазматической мембраны гепатоцита. Поступившие ионы кальция способны активировать кальций-зависимые протеиназы, фосфолипазы и эндонуклеазы. Потеря ионов калия рассматривается как ранний признак повреждения клеток. Высокореактивные молекулы могут повреждать кальций-зависимую АТФ-азу путем ковалентного связывания или окисления SH-групп белка или за счет перекисного окисления окружающих фермент липидов. Повышенная концентрация ионов кальция в цитозоле вызывает повреждения цитоскелета и индуцирует образование разрывов мембраны. При высокой концентрации ионов кальция нарушаются митохондриальные функции и это ведет к гибели клеток.

4. Ферменты деградации  веществ. Активация ферментов  деградации веществ (протеиназы, нуклеазы, фосфолипазы и др.) ведет  к повреждению мембран, высвобождению  арахидоновой кислоты или фрагментации  ДНК. Имеется тесная корреляционная  зависимость между клеточной гибелью и интенсивностью нелизосомального протеолиза как функции рН. При истощении резервов АТФ происходит активация нелизосомальных протеиназ. В этих процессах возможно появление новых антигенов. Ускоренная деградация фосфолипидов обнаруживается при окислительных и аноксических повреждениях клетки. Большое значение в деградации фосфолипидов приписывают фосфолипазе. Митохондриальная фосфолипазная активность играет ведущую роль в развитии некротических изменений в клетке по сравнению фосфолипазами цитозоля и лизосом.

5. Свободные радикалы. Образование свободных радикалов  и реактивных метаболитов является  важным механизмом повреждения  клеток. Можно обозначить следующие  реактивные молекулы, играющие роль  в развитии некротического повреждения гепатоцитов: супероксидный радикал, гипохлорит, хлорамины, синглетный кислород, пероксирадикалы, гидроксильный радикал.

1.2 Иммунные  механизмы гепатотоксичности

Выделяют несколько  основных механизмов повреждения печени посредством молекулярных механизмов, относящихся к иммунным реакциям: функционирование киллерных лимфоцитов и клеточных коопераций, образование неоантигенов и аутоантител, действие медиаторов (цитокины, оксид азота), активация системы комплимента.

1. Иммуноаллергическая  гепатотоксичность. Электрофильные метаболиты могут, ковалентно связываясь с белками, образовывать гаптены. Окислительное повреждение белков в результате образования или транслокации дисульфидных связей, а также окисления радикалов аминокислотных остатков ведет к формированию новых антигенных детерминант. Иммунный ответ возможен против гаптенов и неоантигенов. Аутоантитела выявляются при иммуноаллергических гепатитах, вызванных рядом лекарств. Модифицированные белки оказывают 2 эффекта:

1) как антигены инициируют  образование циркулирующих антител;

2) запускают лимфоцитоопосредованную  цитотоксичность.

2. Цитотоксические лимфоциты.  Цитотоксичность лимфоцитов занимает  видное место в патогенезе  различных заболеваний печени. Выделяют, по крайней мере, два основных  механизма проявления цитотоксичности лимфоцитов. Во-первых, Т-лимфоциты способны находить антигены клеток-мишеней и активироваться при взаимодействии с ними. При этом выделяются цитотоксические агенты, которые вызывают цитолиз клеток-мишеней. Во-вторых, высказывается предположение, что лимфоцит-опосредованная гибель клеток является процессом, не зависящим от присутствия ионов кальция. Предполагают, что изменению проницаемости плазматической мембраны клеток-мишеней при межклеточном взаимодействии предшествует эндонуклеазный гидролиз.

3. Цитокины. Образование  цитокинов - это важный элемент  поддержания гомеостаза организма.  Однако если имеется гиперпродукция  цитокинов возможно повреждение  печени. Большинство цитокинов образуется  в печени при действии различных  стимулов. g-ИФН продуцируется гепатоцитами в процессе вирусной инфекции. ФНО-a синтезируется клетками Купфера при действии целой гаммы гепатотропных повреждающих агентов. Провоспалительные цитокины ФНО-a, ИЛ-1 и ИЛ-6 секретируются клетками Купфера при гепатитах. Этот эффект сопряжен с синтезом белков острой фазы и повышением адгезии нейтрофилов в синусоидах. Эти же цитокины лежат в основе действия многих бактериальных токсинов. Считают, что ФНО-a и ИЛ-1 определяют механизмы некроза и нарушения транспортных систем, ИЛ-6 стимулирует синтез белков острой фазы, ИЛ-8 служит потенциальным хемоаттрактантом для нейтрофилов. g-ИФН и липополисахариды через индукцию NO-синтазы усиливают продукцию оксида азота, токсичного для внутриклеточных патогенных факторов (микобактерии, лейшмании) и опухолевых клеток печени.

4. Система комплимента.  Система комплимента состоит  из каскада белков плазмы крови.  Многие из них синтезируются  в печени. Активация системы происходит  при связывании С1-компонента  с иммунным комплексом. Она сопровождается  повышением фагоцитоза опсонизированных микроорганизмов (С3b), активацией клеток Купфера и нейтрофилов и др. Процесс служит для формирования атакующего мембрану комплекса на клеточной поверхности (C5b-С9). Этот механизм реализуется в печени при эндотоксемии, ишемии-реперфузии, действии свободных радикалов кислорода и иммунных реакциях.

5. Клеточные кооперации. Показано, что клетки Купфера  играют важную роль в развитии  повреждения печени. Можно описать  следующую последовательность событий:  повышение концентрации поступившего через портальную вену эндотоксина - активация клеток Купфера и освобождение ими хемоаттрактантов, включая интерлейкины, лейкотриен В4, С5-компонент комплимента - поступление нейтрофилов из циркуляции - активированные нейтрофилы с рецепторами молекул адгезии прилипают к синусоидальным эндотелиальным клеткам, а молекула адгезии способствуют миграции лейкоцитов в паренхиму печени - активированные нейтрофилы продуцируют свободно-радикальные формы кислорода, которые вызывают разные типы повреждения, например, активацию перекисного окисления мембран - макрофаги печени продуцируют токсические медиаторы и вызывают агрегацию тромбоцитов, что ведет к микротромбозам - развивается локальная гипоксия - появляются лобулярные некротические поражения.

Цитотоксичность ряда гуморальных факторов связана с особенностями синусоидальных эндотелиальных клеток. В отличие от других видов эндотелия, синусоидальный эндотелий фенестрирован и не имеет базальной мембраны. При печеночных венозно-окклюзионных заболеваниях, после трансплантации костного мозга и некоторых других состояниях повреждение эндотелиальных клеток является начальным этапом Т-лимфоцитопосредованной иммунной реакции. Сужение малых внутрипеченочных вен с развитием микротромбозов ведет к нарушению оттока крови и развитию ишемии печени с вторичным повреждением гепатоцитов. Некоторые лекарственные препараты (дакарбазин) и химические компоненты многих растений проявляют селективную токсичность по отношению к синусоидальным клеткам, инициируя развитие вено-окклюзионной патологии печени.

1.3 Механизм  гепотапротекторного действия различных  действующих веществ растений.

Гепатопротекторный эффект флавоноидов проявляется в ослаблении действия повреждающих факторов, в  том числе некоторых химических соединений (четыреххлористого углерода, хлороформа, бензола и др.). Механизм действия флавоноидов заключается в ингибировании перекисного окисления липидов, уплотнение сосудисто-тканевых мембран, сохранение уровня эндогенной аскорбиновой кислоты и гликогена печени. Установлено, что под влиянием кверцетина, лютеолина и других флавоноидов содержание гликогена в печени увеличивается на 38,7-85,9% .

Информация о работе Механизмы поражения гепатоцитов