Автор работы: Пользователь скрыл имя, 19 Ноября 2011 в 01:25, реферат
Предметом изучения дисциплины являются количественные характеристики экономических процессов, протекающих в промышленном производстве, изучение их взаимосвязей на основе экономико-математических методов и моделей. Эти модели линейного и нелинейного программирования, модели исследования операций, модели массового обслуживания.
Основным понятием является понятие математической модели. В общем случае слово модель – это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель – это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.
Эта величина обнуляется из-за того, что отрицательные значения отклонений и положительные взаимно погашаются.
Чтобы избежать этого, возведем их в квадрат, получив так называемую выборочную дисперсию:
Выборочная
дисперсия характеризует
Стандартное отклонение:
Полезное свойство дисперсии:
Т. о.
Характеристики генеральной совокупности:
математическое ожидание М(Х)
дисперсия D(X)
Несмещенная оценка дисперсии:
Для простоты, мы будем использовать смещенную оценку – выборочную дисперсию – при достаточно больших n они практически равны.
Этап 2. Постановка задачи: предположим, что значение каждого отклика yi как бы состоит из двух частей:
- во-первых, закономерный результат того, что фактор х принял конкретное значение хi;
-
во-вторых, некоторая случайная
Таким образом, для любого i = 1,…,n
yi = f(xi) + ei
Смысл случайной величины (ошибки) e:
а) внутренне присущая отклику у изменчивость;
б) влияние прочих, не учитываемых в модели факторов;
в) ошибка в измерениях
Этап
3. Предположения о характере
Возможный вид функции f(xi)
- линейная:
- полиномиальная
- степенная:
- экспоненциальная:
- логистическая:
Методы подбора вида функции:
- графический
- аналитический
Этап 4. Оценка параметров линейной регрессионной модели
1. Имея два набора значений: x1, x2, …, xn и y1, y2, …, yn, предполагаем, что между ними существует взаимосвязь вида:
yi = a + bxi + ei
т. н. функция регрессии
Истинные значения параметров функции регрессии мы не знаем, и узнать не можем.
Задача: построить линейную функцию:
ŷi = a + bxi
так, чтобы вычисленные значения ŷi(xi) были максимально близки к экспериментальным уi (иначе говоря, чтобы остатки (ŷi - yi) были минимальны).
Экономическая интерпретация коэффициентов:
a
– «постоянная составляющая»
отклика, независимая от
b – степень влияния фактора на отклик (случаи отрицательного)
2. Метод наименьших квадратов (МНК):
подставим в задачу формулу:
В данном случае у нас a и b – переменные, а х и у – параметры. Для нахождения экстремума функции, возьмем частные производные по a и b и приравняем их к нулю.
Получили систему из двух линейных уравнений. Разделим оба на 2n:
Из
первого уравнения выразим
и подставим это выражение во второе уравнение:
Построив оценки a и b коэффициентов a и b, мы можем рассчитать т. н. «предсказанные», или «смоделированные» значения ŷi = a + bxi и их вероятностные характеристики – среднее арифметическое и дисперсию.
Несложно заметить, что оказалось . Так должно быть всегда:
Кроме того, вычислим т. н. случайные остатки и рассчитаем их вероятностные характеристики.
Оказалось, . Это также закономерно:
Таким образом, дисперсия случайных остатков будет равна:
Мы произвели вычисления, и построили регрессионное уравнение, позволяющее нам построить некую оценку переменной у (эту оценку мы обозначили ŷ). Однако, если бы мы взяли другие данные, по другим областям (или за другой период времени), то исходные, экспериментальные значения х и у у нас были бы другими и, соответственно, а и b, скорее всего, получились бы иными.
Вопрос: насколько хороши оценки, полученные МНК, иначе говоря, насколько они близки к «истинным» значениям a и b?
Этап 5. Исследование регрессионной модели
1. Теснота связи между фактором и откликом
Мерой тесноты связи служит линейный коэффициент корреляции:
-1 £ rxy £ 1
Отрицательное значение КК означает, что увеличение фактора приводит к уменьшению отклика и наоборот:
2.
Доля вариации отклика у,
где – оценка дисперсии случайных остатков в модели,
Таким образом, R2 – это доля дисперсии у, объясненной с помощью регрессионного уравнения в дисперсии фактически наблюденного у.
Очевидно:
0 £ R2 £ 1
Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятность.
,
где Х – случайная величина, - значения, вероятности которых соответственно равны .
Математическое ожидание приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.
Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .
Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии: .
Линейная
регрессия находит широкое
Ŷ
= а + bx или Ŷ = a + bx + ε;
Уравнение
вида Ŷ = а + bx позволяет по заданным значениям
фактора x иметь теоретические значения
результативного признака, подставляя
в него фактические значения фактора X.
На графике теоретические значения представляют
линию регрессии.
Рисунок
1 – Графическая оценка параметров
линейной регрессии
Построение линейной регрессии сводится к оценке ее параметров – а и b. Оценки параметров линейной регрессии могут быть найдены разными методами. Можно обратится к полю корреляции и, выбрав на графике две точки, провести через них прямую линию. Далее по графику можно определить значения параметров. Параметр a определим как точку пересечения линии регрессии с осью OY, а параметр b оценим, исходя из угла наклона линии регрессии, как dy/dx, где dy – приращение результата y, а dx – приращение фактора x, т.е. Ŷ = а + bx.
Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов(МНК).
МНК
позволяет получить такие оценки
параметров a и b, при которых сумма квадратов
отклонений фактических значений результативного
признака (y) от расчетных (теоретических)
минимальна:
∑(Yi
– Ŷ xi)2 → min
Иными
словами, из всего множества линий
линия регрессии на графике выбирается
так, чтобы сумма квадратов
εi
= Yi – Ŷ xi.
следовательно ∑εi2 → min
Рисунок 2 –
Линия регрессии с минимальной
дисперсией остатков
Чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю.
Обозначим ∑εi2 через S, тогда
S
= ∑ (Y –Ŷ xi)2 =∑(Y-a-bx)2;
Дифференцируем
данное выражение, решаем систему нормальных
уравнений, получаем следующую формулу
расчета оценки параметра b:
b
= (ух – у•x)/(x2-x2).
Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Например, если в функции издержек Ŷ = 3000 + 2x (где x – количество единиц продукции, у – издержки, тыс. грн.) с увеличением объема продукции на 1 ед. издержки производства возрастают в среднем на 2 тыс. грн., т.е. дополнительный прирост продукции на ед. потребует увеличения затрат в среднем на 2 тыс. грн.