Современная география альтернативной энергетики Казахстана

Автор работы: Пользователь скрыл имя, 20 Апреля 2014 в 22:31, дипломная работа

Краткое описание

Централизованный рынок представляет собой своего рода биржу, на которой участники продают и покупают электроэнергию. Основным предметом торгов на этом рынке являются договоры на поставку "за день вперед" (спот-рынок), а также средне- и долгосрочные контракты на поставку энергии (форвардные контракты). На момент принятия Концепции объемы спот-торгов занимали только 1% от общего количества заключаемых контрактов. Все остальное – прямые двусторонние договоры купли-продажи.
Балансирующий рынок электроэнергии в режиме "реального времени" выполняет функции по физическому урегулированию возникающих дисбалансов между договорными и фактическими величинами перетоков электроэнергии. Системный оператор (KEGOC) устраняет возникающие дисбалансы за счет использования резервных мощностей.

Содержание

ВВЕДЕНИЕ……………………………………………………………………….6
1. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ МИРОВОЙ ЭНЕРГЕТИКИ ……………………………………………………9
1.1 Мировое производство, потребление электроэнергии и география распределения основных энергоносителей по регионам мира………………..9
1.2 Современная география использования альтернативных источников энергии в мире…………………………………………………………………….
1.3 Современные методы генерации электроэнергии и энергии ветра в мире……………………………………………………………………………….

2. СОВРЕМЕННОЕ СОСТОЯНИЕ, ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭЛЕКРОЭНЕРГЕТИКИ КАЗАХСТАНА………………………

2.1 Анализ существующего положения и перспективы развития электроэнергетики Казахстана……………………………………………….
2.2 Электроэнергетический рынок Республики Казахстан………………….
3. РАЗВИТИЕ И ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В КАЗАХСТАНЕ…….
3.1 Современные тенденции и перспективы развития ветроэнергетики в Казахстане………………………………………………………………………
3.2 Экономические выгоды и социальные выгоды от развития ветровой энергии в Казахстане…………………………………………………………….

ЗАКЛЮЧЕНИЕ………………………………………………………………….
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ…………

Вложенные файлы: 1 файл

ДИПЛОМНАЯ.docx

— 485.19 Кб (Скачать файл)

       В третьей главе «РАЗВИТИЕ И ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ  В КАЗАХСТАНЕ» дана характеристика современным тенденциям и перспективам развития ветроэнергетики в Казахстане реализуемой на основе совместной работы МИиНТ РК и команды проекта ПРООН в области развития ветроэнегии. Определены система экономических  и социальных выгод от развития ветровой энергии в Казахстане в целях  дальнейшего развития научной, технической и индустриальной базы ветроэнергетического сектора. Обозначены научно обоснованные подходы для достижения этих целей  и ожидаемые результаты от успешной реализации Национальной программы  развития ветроэнергетики.

Структура и объем работы.  Дипломная работа состоит из введения, трех  глав, заключения, содержит более 80 страниц текста компьютерного набора, 4 таблицы, 10 рисунка, 24 наименований использованной литературы.

1.СОВРЕМЕННЫЕ  ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ МИРОВОЙ ЭНЕРГЕТИКИ

1.1 Мировое производство, потребление электроэнергии и  география распределения основных  энергоносителей по регионам мира

       Электроэнергетика  является одной из наиболее  быстро развивающихся отраслей мирового хозяйства. Связано это с тем, что уровень её развития является одним из решающих факторов успешного развития экономики в целом. Объясняется это тем, что на сегодняшний день электроэнергия - это наиболее универсальный вид энергии. По сравнению с серединой прошлого столетия выработка электроэнергии увеличилась более чем в 15 раз и сейчас составляет приблизительно 14,5 млрд. кВч, причем это происходило вследствие роста потребления крупнейшими развивающимися странами, идущими по пути индустриализации. Так, за последние 5 лет энергопотребление в Китае выросло на 76%, Индии - на 31%, Бразилии - на 18%. В 2007 г. по сравнению с 2002 г. абсолютное энергопотребление снизилось в Германии - на 5,8%, в Великобритании - на 2,7%, Швейцарии - на 2,0,во Франции - на 0,6%. В то же время в США энергопотребление продолжало повышаться. Сейчас они производят 4 млрд. кВ•ч ежегодно. В Китае оно составляет 7,7% при ежегодной выработке 1,3 млрд. кВ•ч, в Индии - 6,8%, в Бразилии - 6,1% [2].

        По общей выработке электроэнергии регионы можно расположить таким образом: Северная Америка, Западная Европа, Азия, СНГ, где лидерство удерживает Россия с показателем 800 млн. кВ•ч в год, Латинская Америка, Африка, Австралия [3].

        В  странах первой группы большая  доля электроэнергии вырабатывается  на ТЭС (работающих на угле, мазуте  и природном газе). Сюда можно  отнести США, большинство стран  Западной Европы и Россию.

        Во  вторую группу входят страны, где почти вся электроэнергия  вырабатывается на ТЭС. Это ЮАР, Китай, Польша, Австралия (использующая  в основном уголь в качестве  топлива) и Мексика, Нидерланды, Румыния (богатые нефтью и газом).

      Третья  группа образована странами, в  которых велика или очень велика (до 99,5% -- в Норвегии) доля ГЭС. Это  Бразилия (около 80%) , Парагвай, Гондурас, Перу, Колумбия, Швеция, Албания, Австрия, Эфиопия, Кения, Габон, Мадагаскар, Новая  Зеландия (около 90%). Но по абсолютным  показателям производства энергии  на ГЭС в мире лидируют Канада, США, Россия, Бразилия. Гидроэнергетика значительно расширяет свои мощности в развивающихся странах.

      Четвертую  группу составляют страны с  высокой долей атомной энергии. Это Франция, Бельгия и Республика  Корея.

      В последнее десятилетие в развитии мировой энергетики проявились некоторые важные тенденции, которые при неуправляемом течении могут угрожать устойчивости этой сферы. К таким тенденциям относятся:

- изменение взаимоотношений между потребителями и производителями, усиление конкуренции за ограниченные энергоресурсы;

- высокие темпы роста энергопотребления;

- изменение региональных пропорций энергопотребления;

- высокая доля и растущие объемы потребления органического топлива;

- замедление темпов роста предложения энергии;

- проблемы обеспечения инвестиций в развитие энергетического сектора;

- изменение структуры предложения энергоресурсов и повышение роли отдельных поставщиков;

- рост цен на энергоносители, волатильность цен;

- нарастающая напряженность в обеспечении энергетических нужд транспорта и диспропорции в нефтепереработке;

- рост объемов международной торговли энергоносителями, развитие инфраструктурной составляющей поставок энергоресурсов и обострение связанных с этим рисков;

- усиление политических рисков, в том числе транзитных [4].             

      Ниже каждая из перечисленных тенденций будет рассмотрена более подробно.

       Изменение взаимоотношений между потребителями и производителями, усиление конкуренции за ограниченные энергоресурсы

      Современная ситуация в мировой энергетике характеризуется обострением противоречий между основными игроками на международных энергетических рынках. Практика взаимоотношений между производителями и потребителями энергоресурсов, сложившаяся в последней четверти XX века, уходит в прошлое. Все хуже работают существующие механизмы регулирования мирового энергетического рынка, все очевиднее становится обострение конкуренции между потребителями, подогреваемое появлением на рынке таких мощных игроков, как Китай и Индия.

       В то время как главными потребителями энергоресурсов являются высокоразвитые державы и развивающиеся страны Азии, основная доля мировых запасов углеводородов сконцентрирована в сравнительно небольшой группе развивающихся стран и стран с переходной экономикой. Такие крупные потребители, как США, Евросоюз и Китай сосредотачивают как экономические, так и политические ресурсы для экспансии на одни и те же рынки, что приводит к росту конкуренции.

       В ответ меняется политика стран-производителей в отношении доступа к национальным запасам углеводородов, а также стратегии национальных государственных компаний, контролирующих осн овные мировые углеводородные ресурсы. Госкомпании, располагающие масштабными запасами, стремятся развивать переработку и участвовать в капитале транспортных и сбытовых структур. В свою очередь, транснациональные корпорации, под контролем которых находятся перерабатывающие мощности, транспортно-логистические схемы и дистрибьюция углеводородов, проводят стратегию наращивания своей ресурсной базы. Данное противоречие все более усугубляется и в ближайшее десятилетие будет одной из тенденций, определяющих развитие мировой энергетики.

      Поэтому важным определяющим элементом высоких показателей мировой экономики в текущем периоде являются необычайно высокие темпы роста (по историческим меркам) в развивающихся странах и в странах с переходной экономикой. При сохранении или даже снижении темпов роста в развитых странах наблюдается устойчивый многолетний отрыв в темпах развития ряда ведущих развивающихся стран, прежде всего Китая и Индии. Эти тенденции, дополненные восстановлением роста в России и сравнительно устойчивым ростом в Бразилии, превращают в реальность прогнозы о новой конфигурации экономической мощи в мире в пользу этой группы стран, что еще недавно воспринималось как маловероятное и отдаленное событие.

      Усиление институциональных противоречий между потребителями и производителями углеводородов происходит на фоне высоких темпов роста потребления энергии в мировой экономике и невзирая на высокие цены энергоносителей.

       Многими аналитиками в последние годы признается опасность возникновения очередной волны роста мирового энергопотребления. Предшествующая длинная волна, начавшаяся в конце 1940-х годов, завершилась в середине 1990-х годов, увеличив мировое энергопотребление почти в пять раз, а душевое - почти вдвое. Ее окончание было связано со стабилизацией с 1980-х годов среднедушевого энергопотребления в мире за счет сокращения общего и душевого энергопотребления в бывших странах плановой экономики и снижения душевого энергопотребления в странах, входящих в ОЭСР, при относительно умеренном росте душевого энергопотребления в развивающихся странах [5].Однако в настоящее время первые два фактора перестали действовать, а наиболее крупные из развивающихся стран - Китай и Индия - все быстрее наращивают душевое потребление энергии. С учетом продолжающегося экономического роста развивающихся азиатских стран, быстрого увеличения там численности населения и высокой энергоемкости национальных экономик резко растут потребности этих стран в энергоресурсах. Опережающими темпами увеличивается потребление энергии в Африке и Латинской Америке, и даже в странах Европейского союза возобновился рост душевого энергопотребления.

       Все перечисленное выше позволяет говорить об угрозе нового цикла увеличения энергоемкости мирового ВВП и ускорения темпов роста мирового энергопотребления, несмотря на внедрение новых технологий и энергосберегающих тенденций.

       Развитые страны имеют сравнительно высокий уровень энергопотребления на душу населения, но стремятся к стабилизации этого показателя или хотя бы к замедлению темпов его роста. Заметное снижение энергоемкости происходит в странах с переходной экономикой - преимущественно за счет роста доходов, а такж е благодаря структурной перестройке экономики и снижению доли тяжелой энергоемкой промышленности по мере расширения сферы услуг, искоренения практики расточительства энергии, а также сокращения потребительских дотаций. Тем не менее, страны переходного типа остаются более энергоемкими по сравнению с развивающимися странами или странами ОЭСР. 

        Важнейший вопрос заключается в том, удастся ли переломить тенденцию опережающего роста энергопотребления за счет снижения энергоемкости экономики, в первую очередь в развивающихся странах.

      Рост энергопотребления в мире происходит весьма неравномерно, усугубляя региональные энергетические диспропорции: наиболее быстрые темпы наблюдаются в развивающихся странах Азии и особенно в Китае, на долю которого в 2005 году пришлась практически половина мирового прироста энергопотребления. Увеличивается число стран и крупных регионов, развитие которых не обеспечено собственными энергоресурсами. Им приходится использовать в своей промышленности в основном привозное сырьё. Если в 1990 году такие страны производили 87% мирового ВВП, то спустя десять лет - уже 90%. Особенно резко возросла зависимость от импорта энергии наиболее быстро развивающихся стран (Китая, Индии и др.), и в перспективе ситуация будет только усугубляться. В частности, Азия уже сегодня 60% своих потребностей в нефти обеспечивает за счет импорта, а к 2020 году импорт будет покрывать до 80% спроса. При этом основной частью прогнозных энергоресурсов располагают Северная Америка и страны СНГ; им же принадлежит большая часть разведанных запасов (следом идут зона Персидского залива и Австралия) [6].              .

         Высокая эффективность экономики США способствует умеренному росту потребления первичной энергии, хотя это не избавляет ее от значительного прироста спроса на углеводороды. В целом при повышении среднегодового прироста ВВП с 3,5% до 4,2% мировой спрос на энергию вырос с 1,7% до 2,6%: именно ускорение роста ВВП (превышение темпов роста по сравнению с предыдущим периодом) оказалось неэнергосберегающим в силу причин, кратко изложенных выше. Высокая доля и растущие объемы потребления органического топлива. Несмотря на многочисленные усилия, структура потребления энергии в мире за последние годы существенно не изменилась. Углеводороды (в первую очередь нефть) по-прежнему остаются доминирующими энергоносителями в мировом энергетическом балансе.

      Высокая доля в энергобалансе наиболее ограниченного ресурса - углеводородного топлива - сохраняется несмотря на то, что в ряде стран впервые после Чернобыльской аварии возрождается интерес к атомной энергетике, а промышленно развитые потребители проявляют все больший интерес к альтернативным источникам энергии. Фактически потребление углеводородов в настоящее время не имеет серьезной альтернативы, что создает угрозу их дефицита с учетом ускоренного роста энергопотребления. Недостаточно быстрый по сравнению с ростом энергопотребления рост предложения энергоресурсов вообще и углеводородов в частности обусловлен относительным сокращением поля приложения сил и инвестиций по наращиванию производства энергоносителей, исчерпания их наиболее доступных запасов, а также геополитической напряженности в регионах, богатых углеводородами. Особенно резко увеличивается разрыв между растущими объемами потребления и снижающимися объемами производства углеводородов в развитых странах. Так, доля стран ОЭСР в производстве первичной энергии сократилась с 61,3% в 1971 году до 48,5% в 2005 году. Особенно сложная ситуация сложилась в Европейском союзе, на территории которого находится лишь 3,5% мировых доказанных запасов газа и менее 2% доказанных запасов нефти (в основном в Норвегии и Великобритании). В то же время расположенные в Европе нефтегазовые месторождения эксплуатируются гораздо интенсивнее, чем в других регионах мира, что ведет к их быстрому истощению.

     Важнейшим негативным фактором развития энергетики является снижение уровня обеспеченности мировой экономики запасами нефти (см. рис. 6). Среднее значение ежегодно открываемых запасов нефти снизилось с 70 млрд. барр. в 1960-1980 гг. до 6-18 млрд. барр. в 1990-2005 годах. Ежегодная добыча не восполняется поисковым бурением уже на протяжении многих лет (13 млрд. барр. вновь открытых запасов против 30 млрд. барр. добычи в 2004 году), либо основное восполнение происходит за счет нетрадиционных запасов, как это случилось в 2006 году. Отметим, что 61% мировых запасов нефти и 40,1% запасов газа сосредоточены на политически нестабильном Ближнем Востоке, и роль этих стран в нефтедобыче только увеличивается. Из-за ограниченных возможностей дополнительного роста производства увеличиваются риски, связанные с возможной дестабилизацией рынка. Нарастание энергопотребления на фоне медленного роста предложения уже проявляется в скачке цен на все коммерческие виды топлива. Значительный рост мировой экономики в последние годы (особенно в развивающихся странах), рост потребления ПЭР (на 4,4% в 2004 г. и на 2,7% - в 2005 г.), максимальный уровень загрузки мощностей, экстремальные погодные условия, продолжающиеся конфликты на Ближнем Востоке, растущий интерес к энергетическому сектору со стороны финансовых инвесторов - все это также послужило значительному росту цен на энергоресурсы, в первую очередь на нефть[7].              .

      Цены на нефть вновь начали повышаться с 2002 года. В конце лета 2005 г. они превысили рекорд семидесятых годов в номинальном выражении. При этом, хотя реальные цены на нефть оставались ниже максимума начала 1980-х гг., среднегодовая цена в номинальном выражении за баррель нефти марки «Брент» впервые достигла 54 долл./барр., а марки WTI - 56 долл./барр., что более чем на треть превышает уровень 2004 года. Рост цен на углеводороды приобрел характер устойчивой тенденции с 2000 года, когда разразился очередной арабо-израильский конфликт. Впоследствии все пиковые значения нефтяных котировок отражали набирающую обороты региональную напряженность: вторжение США в Ирак, нагнетание обстановки вокруг ядерной программы Ирана, «тридцатидневная» война в Ливане и т.д. Цены на нефтепродукты повторяли динамику цен на нефть, при этом дефицит светлых нефтепродуктов привел к более быстрому росту цен на них.

       Резкий рост цен на нефть в последние годы заставил большинство научных и консалтинговых организаций пересмотреть уровни прогнозных цен в сторону повышения. Перспективы цен на нефть остаются необычайно неопределенными, усложняя анализ тенденций для энергетических рынков в целом. Высокие и нестабильные цены на нефть - важнейшая угроза мировой экономике и энергетике: они не только негативно влияют на темпы роста мирового ВВП, представляя особую опасность для развивающихся стран-импортеров энергоресурсов, но и тормозят инвестиционный процесс в энергетике, образуя сложнопредсказуемые денежные потоки.

       Вслед за ценами на нефть выросли мировые цены на природный газ, впервые превысив порог в 210 долл./м3 (или 6 долл./млн. БТЕ) на рынках США и Великобритании. До 2003 года самым дорогим в мире был СПГ в Японии, цены которого формируются в привязке к ценам сырой нефти (см. рис. 7). Однако в последние годы формирующаяся в Северной Америке на опотовом рынке Henry Hub цена превысила цены на остальных региональных рынках и даже цену на нефть, пересчитанную по теплотворной способности. В Европе цены как на сетевой газ, так и на СПГ оказались ниже американских: в основном они привязаны к ценам на нефть и нефтепродукты. Однако одновременно на динамику цен здесь оказывают влияние опотовые и фьючерсные цены на британском опотовом рынке газа в Национальном балансировочном пункте (National Balancing Point, или NBP), где, как и в Северной Америке, в последние годы наблюдался значительный рост цен.

       Рост цен на нефть и газ в последние годы привели и к более высоким темпам роста спроса на уголь и, соответственно, цен на него. Цена импортного энергетического угля в странах ОЭСР поднялась со среднего значения 36 долл./т в 2000 году до 62 долл./т в настоящее время.

В последние десятилетия ХХ века прогресс в разведке и бурении компенсировал ухудшение горно-геологических условий при быстром росте добычи нефти (но с уменьшением ее обеспеченности запасами), что давало устойчивое снижение цен, то в ХХI столетии технический прогресс в отрасли явно замедлился, а в результате дорожают приросты запасов и добычи нефти. В итоге прогнозируемая в соответствии со сложившимися тенденциями динамика потребления нефти уже через 10 лет может не обеспечиваться ее добычей, рассчитанной по апробированным моделям использования ограниченных природных ресурсов.

       Что касается атомной энергетики, то она является одной из самых молодых и динамично развивающихся отраслей мировой экономики. Её история насчитывает лишь немногим более 50 лет. Развитие атомной энергетики стимулируют растущие потребности человечества в топливе и энергии при ограниченности невозобновляемых ресурсов. В сравнении с другими энергоносителями ядерное топливо имеет в миллионы раз большую концентрацию энергии. Немаловажно и то, что атомная энергетика практически не увеличивает «парниковый эффект.

         По данным МАГАТЭ, в начале 2007 года в мире действовали 439 ядерных энергоблоков общей мощностью 367,77 гигаватт. Еще 29 энергоблоков в 11 странах находятся в различной стадии строительства. Сегодня на атомных электростанциях вырабатывается 16% мировой электроэнергии. При этом 57% всей «ядерной» электроэнергии приходится на США (103 энергоблока), Франция (59 энергоблоков) и Японию (54 энергоблока). В настоящее время наиболее динамично атомная энергетика развивается в Китае (здесь строится шесть 6 энергоблоков), Индии (5 блоков), России (3 блока). Новые энергоблоки строятся также в США, Канаде, Японии, Иране, Финляндии и других странах. О своих намерениях развивать атомную энергетику заявили еще ряд стран, среди которых - Польша, Вьетнам, Белоруссия и пр. В общей сложности сейчас рассматривается более 60 заявок на строительство блоков. Более 160 проектов находятся в процессе разработки[8].             

       Таким образом, оценивая сегодняшнее положение дел на мировом рынке цен можно с уверенностью сказать, что в цене нефти и газа заложено много факторов: баланс спроса и предложения, экономика и инвестиции, политика, войны и теракты. Каждый из этих факторов может цену как поднимать, так и опускать. И, так как большое количество нефти и газа сосредоточено в Персидском заливе, их роль постоянно растёт, в результате чего растёт и риск, связанный с дестабилизацией рынка. Также одной из главных тенденций сегодняшней топливной промышленности является спад или стагнация добычи нефти в некоторых странах, среди которых выделяются Норвегия, Великобритания, США и др.

      Основу мировой энергетики составляют 3 отрасли топливной промышленности. Нефтяная промышленность мира. На современном этапе это ведущая отрасль мировой топливно-энергетической промышленности. В 2007 году добыча нефти снизилась на 0,2% - до 3,6 млрд. тонн. По сравнению с 2006 г. межрегиональные поставки нефти, по данным “ВP”, увеличились на 2,6% и достигли 1984 млн. т. Что касается географического распределения запасов нефти, то доля развивающихся стран в этих запасах - 86%. Наиболее крупные нефтяные запасы сосредоточены в пределах зарубежной Азии (без СНГ 70%). Особенно здесь выделяется Ближний и Средний Восток, где сосредоточено около 60% запасов и более 40% мировой добычи нефти. В странах этого региона располагаются государства с наиболее крупными запасами нефти : Саудовская Аравия (более 35 млрд. тонн), Ирак (более 15 млрд. тонн), Кувейт (более 13 млрд. тонн), ОАЭ и Иран (около 13 млрд. тонн). Из других азиатских стран по запасам нефти можно выделить Китай и Индонезию. В пределах Латинской Америки запасы нефти составляют приблизительно 12% от мировых. На сегодняшний день здесь особо выделяется Венесуэла (более 11 млрд. тонн), Мексика (около 4 млрд. тонн). На долю Африки приходится приблизительно 7% мировых запасов нефти. По их величине выделяются Ливия (40% общеафриканских запасов), Алжир, Египет, Нигерия. Что касается СНГ, то его доля оценивается в 6%. Однако Россия по разным оценкам имеет от 6,7 до 27 млрд. тонн. Всего нефть добывают в 80 странах[9].              .

  • Крупнейшие из них приведены в таблице 1
  • Таблица 1. Крупнейшие страны-производители нефти в 2007 г., млн. т.
 

 

Страна-производитель

Показатель добычи за 2007 год

 

Саудовская Аравия

493

 

США

350

 

Россия

330

 

Китай

187

 

ОАЭ

136

 

Венесуэла

134

 

Норвегия

119

 
     

       Благодаря высоким потребительским свойствам, низким издержкам добычи и транспортировки, широкой гамме применения во многих сферах человеческой деятельности, природный газ занимает особое место в топливно-энергетической и сырьевой базе. К настоящему времени добыча природного газа увеличилась приблизительно в 5,5 раз и сейчас составляет 2,4 триллиона мі ежегодно. Разведанные запасы природного газа оцениваются приблизительно в 150 триллиона мі. По разведанным запасам природного газа (их объем все время растет) особенно выделяются СНГ и Юго-Западная Азия (по 40% мировых запасов), из отдельных стран - Россия, где сосредоточено около одной третьей мировых запасов или 50 триллионов мі (почти 90% запасов СНГ) и Иран ( 15% мировых ). В "первую десятку" газодобывающих стран мира входят Россия (около 600 млрд. мі), США (550 млрд. мі), Канада (170 млрд. мі), Туркменистан, Нидерланды, Великобритания, Узбекистан, Индонезия, Алжир, Саудовская Аравия. Крупнейшими потребителями газа являются США (приблизительно 650 млрд. мі), Россия ( 350 млрд. мі ), Великобритания ( около 90 млрд. мі) и Германия ( около 80 млрд. мі ).

       Несмотря  на снижение доли угля в  энергопотреблении, угольная промышленность  продолжает оставаться одной  из ведущих отраслей мировой  энергетики. По сравнению с нефтяной  промышленностью, она лучше обеспечена  ресурсами.В Настоящее время ежегодно  добывается около 5 млрд. тонн угля. Отметим, что угля на Земле  гораздо больше, чем нефти и  природного газа. При нынешнем  уровне потребления подтвержденных  запасов газа должно хватить  на 67 лет, нефти - на 41 год, а угля - на 270 лет. Прогнозные ресурсы угля  на Земле в настоящее время  составляют более 14,8 трлн. тонн, а  мировые промышленные запасы  угля - свыше 1 трлн. тонн. При этом  примерно три четверти мировых  запасов угля приходятся на  страны бывшего СССР, США и  Китай. Мировой рынок угля в  настоящее время является более  конкурентным, чем нефтяной и  газовый, поскольку месторождения  и добыча угля расположены  практически по всем континентам  и регионам мира. Уголь будет  играть особенно важную роль  в электроэнергетике тех регионов, в которых альтернативных видов  топлива мало. Благодаря своей  сравнительной дешевизне этот  энергоноситель остается особенно  важным для развивающихся стран  Азии.

        Мировые  запасы угля составляют 1,2 трлн. т. Примерно три четверти мировых  запасов угля приходятся на  страны бывшего СССР, США и  Китай. При этом в недрах России сосредоточена треть мировых ресурсов угля, или 173 млрд. тонн, а в Казахстане - 34 млрд. тонн. В отличие от нефти и газа на экспорт идет небольшая часть добываемого угля - 10%. По данным Международного института угля, основными экспортерами угля являются Австралия (231 млн. тонн в 2006 году), Индонезия (108 млн. тонн) и Россия (76 млн. тонн). Основные потребители угольной продукции - Япония (178 млн. тонн в 2006 году) и Южная Корея (77 млн. тонн). Китай является крупнейшим потребителем угля (2,4 млрд. тонн в 2006 году), что связано с большой долей угля в энергетике страны. Согласно данным The China Daily, потребление угля в Китае к 2010 году достигнет 2,87 млрд. тонн. Среди регионов по добыче угля лидируют Зарубежная Азия (40 % мировой добычи), Западная Европа, Северная Америка (немногим более 20%) и страны СНГ[10].              .

1.2 Современная география использования альтернативных источников энергии в мире

          Весь мир сегодня в поисках новых источников энергии. Сегодня в мире стали всерьез задумываться над тем, как не допустить разграбления полного истощения природных ресурсов. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны не задумываются о последствиях своей деятельности. Они расходуют нефтяные запасы, не задумываясь о будущем. Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно альтернативные источники энергии начали искать те страны где нет собственных запасов нефти и газа, и которым приходится их покупать.

      Поэтому в общую типологию электростанций включаются электростанции, работающие на так называемых нетрадиционных или альтернативных источниках энергии. К ним относят: энергию приливов и отливов; энергию малых рек;·энергию ветра; энергию Солнца; геотермальную энергию; энергию горючих отходов и выбросов; энергию вторичных или сбросовых источников тепла и другие.

      Несмотря на то, что нетрадиционные виды электростанций занимают всего несколько процентов в производстве электроэнергии, в мире развитие этого направления имеет большое значение, особенно учитывая разнообразие территорий стран. В России единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11МВт. Станция эксплуатируется с 1964 года и уже устарела как морально, так и физически. Уровень технологических разработок России в этой области сильно отстает от мирового. В удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источники электроэнергии - наилучшее решение.

        Возрастанию числа электростанций на альтернативных источниках энергии будут способствовать следующие принципы: более низкая стоимость электроэнергии и тепла, получаемая от нетрадиционных источников энергии, чем от всех других источников; возможность практически во всех странах иметь локальные электростанции, делающие их независимыми от общей энергосистемы; доступность и технически реализуемая плотность, мощность для полезного использования; возобновляемость нетрадиционных источников энергии; экономия или замена традиционных энергоресурсов и энергоносителей; замена эксплуатируемых энергоносителей для перехода к экологически более чистым видам энергии; повышение надежности существующих энергосистем.

        Практически каждая страна располагает каким-либо видом этой энергии и в ближайшей перспективе может внести существенный вклад в топливно-энергетический баланс мира.

      Солнечная энергия. Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров. Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 % попавшего на него солнечного света. Уже в 1981 году через пролив Ла-Манш совершил перелёт первый в мире самолёт с двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа. А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”[11].             

         С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека. Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

        На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

        Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях. Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спутнике Земли (запущенном на орбиту 15 мая 1958 г.).

      Энергия ветра. На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И, тем не менее, всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

      Морская энергия. В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 году британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения “морского” электричества по сравнению с другими его источниками, в частности - атомными. В мае 1988 года в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа, который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 кВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена “морской” электроэнергии с 1987 года снизилась вдесятеро.

Информация о работе Современная география альтернативной энергетики Казахстана