Современная география альтернативной энергетики Казахстана

Автор работы: Пользователь скрыл имя, 20 Апреля 2014 в 22:31, дипломная работа

Краткое описание

Централизованный рынок представляет собой своего рода биржу, на которой участники продают и покупают электроэнергию. Основным предметом торгов на этом рынке являются договоры на поставку "за день вперед" (спот-рынок), а также средне- и долгосрочные контракты на поставку энергии (форвардные контракты). На момент принятия Концепции объемы спот-торгов занимали только 1% от общего количества заключаемых контрактов. Все остальное – прямые двусторонние договоры купли-продажи.
Балансирующий рынок электроэнергии в режиме "реального времени" выполняет функции по физическому урегулированию возникающих дисбалансов между договорными и фактическими величинами перетоков электроэнергии. Системный оператор (KEGOC) устраняет возникающие дисбалансы за счет использования резервных мощностей.

Содержание

ВВЕДЕНИЕ……………………………………………………………………….6
1. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ МИРОВОЙ ЭНЕРГЕТИКИ ……………………………………………………9
1.1 Мировое производство, потребление электроэнергии и география распределения основных энергоносителей по регионам мира………………..9
1.2 Современная география использования альтернативных источников энергии в мире…………………………………………………………………….
1.3 Современные методы генерации электроэнергии и энергии ветра в мире……………………………………………………………………………….

2. СОВРЕМЕННОЕ СОСТОЯНИЕ, ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЭЛЕКРОЭНЕРГЕТИКИ КАЗАХСТАНА………………………

2.1 Анализ существующего положения и перспективы развития электроэнергетики Казахстана……………………………………………….
2.2 Электроэнергетический рынок Республики Казахстан………………….
3. РАЗВИТИЕ И ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В КАЗАХСТАНЕ…….
3.1 Современные тенденции и перспективы развития ветроэнергетики в Казахстане………………………………………………………………………
3.2 Экономические выгоды и социальные выгоды от развития ветровой энергии в Казахстане…………………………………………………………….

ЗАКЛЮЧЕНИЕ………………………………………………………………….
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ…………

Вложенные файлы: 1 файл

ДИПЛОМНАЯ.docx

— 485.19 Кб (Скачать файл)

 

 

Таблица 3 Суммарные установленные мощности, МВт, и прогноз WWEA до 2010 г.

1997

7475

1998

9663

1999

13696

2000

18039

2001

24320

2002

31164

2003

39290

2004

47686

2005

59004

2006

73904

2007

93849

2008

120791

2009 прогноз

140000

2010 прогноз

170000


 

 

      Страны Евросоюза в 2005 году вырабатывают из энергии ветра около 3 % потребляемой электроэнергии. В 2007 году ветряные электростанции Германии произвели 14,3 % от всей произведённой в Германии электроэнергии[9]. В 2007 году более 20 % электроэнергии в Дании вырабатывалось из энергии ветра [9]. Индия в 2005 году получает из энергии ветра около 3 % всей электроэнергии. В 2007 году в США из энергии ветра было выработано 48 млрд кВт·ч электроэнергии, что составляет более 1 % электроэнергии, произведённой в США за 2007 год. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии [9]. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны .

     Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Мощность высотных потоков ветра (на высотах 7-14 км) примерно в 10-15 раз выше, чем у приземных. Эти потоки обладают постоянством, почти не меняясь в течение года. Возможно использование потоков, расположенных даже над густонаселёнными территориями (например — городами), без ущерба для хозяйственной деятельности.

       Правительством Канады установлена цель к 2015 году производить 10 % электроэнергии из энергии ветра. Германия планирует к 2020 году производить 20 % электроэнергии из энергии ветра. Европейским Союзом установлена цель: к 2010 году установить 40 тыс. МВт ветрогенераторов, а к 2020 году — 180 тыс. МВт. В Испании к 2011 году будет установлено 20 тыс. МВт ветрогенераторов. В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году. Индия к 2012 году увеличит свои ветряные мощности в 4 раза в сравнении с 2005 годом. К 2012 году будет построено 12 тыс. МВт новых ветряных электростанций. Новая Зеландия планирует производить из энергии ветра 20 % электроэнергии. Великобритания планирует производить из энергии ветра 10 % электроэнергии к 2010 году. Египет — к 2010 году установить 850 МВт новых ветрогенераторов. Япония планирует к 2010 — 2011 году увеличить мощности своих ветряных электростанций до 3000 МВт.[12] Международное Энергетическое Агентство International Energy Agency (IEA) прогнозирует, что к 2030 году спрос на ветрогенерацию составит 4800 гигаватт.

Рисунок 4. Лопасти ветрогенератора на строительной площадке.

        Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра.

Таблица 4- Скорости ветра

Скорость ветра

Себестоимость (для США, 2004 год)

7,16 м/c

4,8 цента/кВт·ч;

8,08 м/с

3,6 цента/кВт·ч;

9,32 м/с

2,6 цента/кВт·ч.


 

 

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 4,5—6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

       В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

      Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать. Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

        По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперед» или спотовом режиме превышает 95 %. Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляюмую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередач оказываются менее нагруженными, хотя общее потребление мощности может быть выше. Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

       У нас считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

 Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель). Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети). Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

        В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

        Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора) энергия ветер себестоимость перспектива.

Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)

Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

          В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощю ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

Отопление является основным энергопотребителем любого дома в Казахстане. Схема ветрогенератора и управляющей автоматики кардинально упрощается. В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.

Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей. Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.   Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.

         По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн. Ветряные энергетические установки производят две разновидности шума: механический шум — шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей) аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки). В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не дает информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно ( Таблица -5).

Таблица 5 – Критерии измерений уровня шума

Источник шума

Уровень шума, дБ

Болевой порог человеческого слуха

120

Шум турбин реактивного двигателя на удалении 250 м

105

Шум от отбойного молотка в 7 м

95

Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м

65

Шумовой фон в офисе

60

Шум от легковой автомашины при скорости 64 км/ч

55

Шум от ветрогенератора в 350 м

35—45

Шумовой фон ночью в деревне

20—40


 

 

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ. Примером подобных констуктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

       Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м. Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний. При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлет льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки. Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

      Визуальное воздействие ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов. В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

        Использование земли. Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельности, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год(Таблица-6).

Таблица 6 - Удельная потребность в площади земельного участка для производства 1 млн кВт•ч электроэнергии

Источник энергии

Удельный показатель площади земельного участка, 
требующейся для производства 1 млн кВт·ч за 30 лет (м²)

Геотермальный источник

404

Ветер

800—1335

Фотоэлектрический элемент

364

Солн. нагревательный элемент

3561

Уголь

3642

Информация о работе Современная география альтернативной энергетики Казахстана