Одномерные установившиеся потоки жидкости и газа в пористой среде

Автор работы: Пользователь скрыл имя, 31 Октября 2013 в 17:41, курсовая работа

Краткое описание

Жидкости и газы движутся в продуктивных пластах в мельчайших каналах, образованных либо системой сообщающихся друг с другом пор между зернами горной породы, либо трещинами в скелете плотного песчаника, известняка и т.д. Такое движение в пористой и трещиноватой среде называется фильтрацией.
В отличие от движения жидкостей и газов по трубам и в открытых руслах фильтрация имеет следующие характерные особенности: чрезвычайно малые поперечные размеры поровых каналов, крайне малые скорости движения жидкостей, исключительно большая роль сил трения вследствие вязкости жидкостей и огромных поверхностей стенок поровых каналов, о которые происходит трение жидкостей и газов при фильтрации.

Содержание

Введение
Схемы одномерных фильтрационных потоков 5
Расчет основных характеристик одномерных фильтрационных потоков жидкости и газа 9
Установившееся движение газированной жидкости в пористой среде 15
Одномерное установившееся движение газов по линейному закону 21
Установившиеся безнапорные течения 29
Одномерные безнапорные фильтрационные потоки жидкости 32
Задачи 36
Выводы
Список литературы

Вложенные файлы: 1 файл

1.doc

— 640.00 Кб (Скачать файл)

 

Министерство  образования Российской Федерации

Российский государственный  университет

нефти и газа имени  И.М. Губкина

филиал в г. Оренбурге

 

 

 

 

Курсовая работа

 

По дисциплине «Подземная гидромеханика»

на тему:

«Одномерные установившиеся потоки жидкости и газа в пористой среде»

 

 

 

 

 

 

 

Выполнил:

Группа:

Проверил: Полкунов Ю. Г.

 

 

 

 

г.Оренбург - 2009

Содержание

 

Аннотация

Введение

  1. Схемы одномерных фильтрационных потоков                                               5
  2. Расчет основных характеристик одномерных фильтрационных потоков жидкости и газа                                                                                                        9
  3. Установившееся движение газированной жидкости в пористой среде      15
  4. Одномерное установившееся движение газов по линейному закону         21
  5. Установившиеся безнапорные течения                                                         29
  6. Одномерные безнапорные фильтрационные потоки жидкости                  32
  7. Задачи                                                                                                                36

Выводы

Список литературы

 

 

 

Аннотация

 

В данной курсовой работе рассматривается установившееся движение жидкости и газа в пористых средах, разные виды течения жидкости, фильтрация жидкости, газа и их смесей в природных пластах. Так же приведены расчеты характеристик одномерных фильтрационных потоков. Прилагаемые задачи показывают практическое применение данного метода.

Курсовая работа состоит  из введения, 7 глав, заключения, списка литературы, 39 страниц печатного текста, 16 рисунков.

 

Введение

 

Современное состояние  и перспективы дальнейшего развития нефтяной и газовой промышленности характеризуются переходом на интенсивные методы разработки месторождений, существенным усложнением горно-геологических и термобарических условий их эксплуатации. В связи с этим применяются новые методы повышения нефтеотдачи пластов, основанные на дальнейшем совершенствовании методов гидродинамического воздействия на пласты, более широким применением термических, физико-химических и газовых методов воздействия на природные резервуары и насыщающие их флюиды.

Рассмотрение одномерного  установившегося потоков жидкости и газа в пористой среде является очень важной сферой исследования, при исследовании термического состояния пористых пластов рассматривают общие закономерности межфазового теплообмена, термодинамических эффектов при движении по пласту жидкости и газа.

Жидкости и газы движутся в продуктивных пластах в мельчайших каналах, образованных либо системой сообщающихся друг с другом пор между зернами горной породы, либо трещинами в скелете плотного песчаника, известняка и т.д. Такое движение в пористой и трещиноватой среде называется фильтрацией.

В отличие от движения жидкостей и газов по трубам и  в открытых руслах фильтрация имеет следующие характерные особенности: чрезвычайно малые поперечные размеры поровых каналов, крайне малые скорости движения жидкостей, исключительно большая роль сил трения вследствие вязкости жидкостей и огромных поверхностей стенок поровых каналов, о которые происходит трение жидкостей и газов при фильтрации.

 

  
       1. Описание одномерных потоков. Схемы одномерных фильтрационных потоков

 

Ввиду чрезвычайной сложности  реальных процессов фильтрации пластовых флюидов построить полностью подобные физические или геометрические модели невозможно. Поэтому в большинстве случаев ограничиваются приближенным моделированием фильтрационных течений, позволяющим обеспечить адекватное математическое описание процесса разработки нефтяных и газовых месторождений. Изучение этого процесса может проводиться на упрощенных (идеализированных) моделях - схемах одномерных и не одномерных фильтрационных потоков при установившихся или неустановившихся режимах. При изучении фильтрационных потоков жидкости и газа в природных пластах должна быть проведена такая схематизация геометрической формы движения, которая позволяет создать расчетные схемы, учитывающие основные эффекты и позволяющие определить параметры течения. При изучении элементарных фильтрационных потоков в подземной гидромеханике основными являются модели установившейся и неустановившейся фильтрации однофазных флюидов (несжимаемых или сжимаемых) в однородной (изотропной) пористой среде. Эти модели являются классическими и позволяют изучать фильтрационные течения методами математической физики. Однако необходимость решения более сложных неодномерных задач фильтрации жидкостей, газов и их смесей в природных пластах потребовала создания более совершенных математических моделей, основанных на лучшем знании и понимании гидродинамических и физико-химических процессов, происходящих в залежи при ее разработке. Использование этих моделей, как правило, связано с применением численных методов и современной вычислительной техники. Данная глава посвящена изучению простейших одномерных установившихся потоков жидкости и газа в пористой среде по линейному и нелинейному закону фильтрации. Одномерным называется фильтрационный поток жидкости или газа, в котором скорость фильтрации, давление и другие характеристики течения являются функциями только одной координаты, отсчитываемой вдоль линии тока. Наиболее характерными, применительно к процессам фильтрации нефти, воды и газа, одномерными потоками являются:

  • прямолинейно-параллельный фильтрационный поток;
  • плоскорадиальный фильтрационный поток;
  • радиально-сферический фильтрационный поток.

 

Приведем краткое описание этих потоков. Прямолинейно-параллельный фильтрационный поток. Предположим, что при фильтрации флюида траектории всех частиц параллельны, а скорости фильтрации во всех точках любого поперечного (перпендикулярного линиям тока) сечения равны друг другу. Законы движения вдоль всех траекторий такого фильтрационного потокоодинаковы, а поэтому достаточно изучить движение вдоль одной из траекторий, которую можно принять за ось координат ось х (рисунок 1.1). Прямолинейно-параллельный поток имеет место в лабораторных условиях при движении жидкости или газа через цилиндрический керн или через прямую трубу постоянного диаметра, заполненную пористой средой; на отдельных участках продуктивного пласта при движении жидкости к батарее скважин, если пласт постоянной толщины имеет в плане форму прямоугольника (смотри рисунок 1.1). Линии тока будут искривляться только вблизи скважин. Если уплотнить сетку скважин в батарее заменить батарею сплошной прямолинейной выработкой галереей, то движение к галерее будет строго прямолинейно-параллельным. Поток можно считать прямолинейно-параллельным на некотором участке между нагнетательной и добывающей батареями скважин.

 

 

Рисунок 1.1: Схема прямолинейно-параллельного потока к батарее скважин.

 

 

 

 

 

Рисунок 1.2: Схема прямолинейно-параллельного течения в пласте.

 

Пласт, в котором имеет  место прямолинейно-параллельный поток, удобно схематизировать в виде прямоугольного параллелепипеда высотой h (толщина пласта), шириной В и длиной L (рисунок 1.2). Левая грань является контуром питания, здесь давление постоянно и равно Рк правая грань - поверхность стока (галерея) с давлением Рг. Все остальные грани непроницаемы.

Плоскорадиальный фильтрационный поток. Предположим, что имеется горизонтальный пласт постоянной толщины h и неограниченной или ограниченной протяженности. В пласте пробурена одна скважина, вскрывшая его на всю толщину и имеющая открытый забой. При отборе жидкости или газа их частицы будут двигаться по горизонтальным траекториям, радиально сходящимся к скважине. Такой фильтрационный поток называется плоскорадиальным. Картина линий тока в любой горизонтальной плоскости будет одинакова, и для полной характеристики потока достаточно изучить движение флюида в одной горизонтальной плоскости. В плоскорадиальном одномерном потоке давление и скорость фильтрации в любой точке зависят только от

расстояния r данной точки от оси скважины.

 

 

а)

   б)

 

 

Рисунок 1.3: Схема плоскорадиального потока в круговом пласте:

                      a) Общий вид; б) план.

 

 

Рисунок 1.4: Вертикальное сечение радиально - сферического фильтрационного потока

 

На рисунке 1.3, а, б приведена схема плоскорадиального фильтрационного потока. Схематизируемый пласт ограничен цилиндрической поверхностью радиусом Rk, (контуром питания), на которой давление постоянно и равно рк; на цилиндрической поверхности скважины радиусом rc (забой скважины) давление равно рс. Кровля и подошва пласта непроницаемы. На рисунке 1.3 б, приведены сечение пласта горизонтальной плоскостью и радиальные линии тока, направленные к скважине. Если скважина не добывающая, а нагнетательная, то направление линий тока надо изменить на противоположное. Радиально - сферический фильтрационный поток. Рассмотрим схему пласта неограниченной толщины с плоской горизонтальной непроницаемой кровлей. Скважина сообщается с пластом, имеющим форму полусферы радиусом Rk, (рисунок 1.4). При эксплуатации такой скважины траектории движения всех частиц жидкости или газа в пласте будут прямолинейными в пространстве и радиально сходящимися в центре полусферического забоя, в точке О. В таком установившемся потоке давление и скорость в любой его точке будут функцией только расстояния г этой точки от центра полусферы. Следовательно, этот фильтрационный поток является также одномерным и называется радиально-сферическим. Такой поток может реализовываться вблизи забоя, когда скважина вскрывает только самую кровлю пласта или глубина вскрытия h значительно меньше толщины пласта. Описанные схемы одномерных фильтрационных потоков позволяют создавать простейшие модели реальных течений, возникающих при разработке нефтегазовых месторождений и решать практические задачи. Задача исследования установившегося фильтрационного потока заключается в определении следующих характеристик: дебита (или расхода), давления, скорости фильтрации в любой точке потока, а также установление закона движения частиц жидкости или газа вдоль их траекторий и определение средневзвешенного по объему порового пространства пластового давления.

 

 

2. Расчет основных характеристик одномерных фильтрационных потоков жидкости и газа

 

Для расчета перечисленных  характеристик одномерных фильтрационных потоков жидкости и газа можно использовать два подхода. Первый из них вывод дифференциальных уравнений и их решение отдельно для прямолинейно-параллельного, плоскорадиального и радиально-сферического потоков жидкости и газа. Второй-вывод обобщенного уравнения одномерного течения флюида в недеформируемой трубке тока переменного сечения с использованием функции Лейбензона и получение из него конкретных формул применительно к различным схемам фильтрационных потоков. Второй подход более эффективен, позволяет исходить из обобщенных характеристик течения. Он используется в настоящем учебнике. В случае одномерного течения флюида в недеформируемой трубке тока переменного сечения (смотри рисунок 1.5) массовый расход по всей длине струйки сохраняется постоянным:

 

Qs=pQ=pwω(s)=const,                                        (2.1)

 

где s - координата, взятая вдоль линии тока, возрастающая по течению флюида.

 

Рисунок 1.5: Трубка тока

 

Запишем закон Дарси (2.2) через функцию Лейбензона (2.3). Для этого умножим правую и левую части уравнения (2.2) на плотность флюида р(р) и на площадь сечения ω(s):

 

,                                             (2.2)

 

                                     (2.3)

 

получим:

.

 

На основании формулы (2.3) можно заменить ρdp = dР

Тогда:

 

.                                     (2.4)

 

Это дифференциальное уравнение  является основным при расчете

одномерных потоков.

Найдем из него распределение  функции Лейбензона по длине струйки

Р(s) и выведем формулу для расчета дебита. В уравнении (2.4) разделим

переменные

.                                         (2.5)

 

и проинтегрируем в пределах от s=s1 где известно значение функции Лейбензона Р=Р1 до текущего значения s и соответствующего ему Р:

 

.                                     (2.6)

 

Обозначим

,                                             (2.7)

 

тогда

 

,                                    (2.8)

 

Интегрируя (2.5) по s в пределах от s1 до s2 и по P от P1 до P2 , получим:

 

.                                     (2.9)

 

Из последнего равенства  найдем массовый расход:

 

,                                      (2.10)

 

где:

.                                          (2.11)

 

Формула (2.9) является аналогом закона Ома: силе тока соответствует дебит, электрическому потенциалу - функция Лейбензона, и по аналогии с электрическим сопротивлением знаменатель формулы (2.9) R12 , т.е. выражение (2.11), называют фильтрационным сопротивлением. Подставив выражение для массового расхода из (2.9) в (2.8), получим окончательно:

 

.                          (2.12)

 

Массовая скорость фильтрации определяется равенством:

 

.                                       (2.13)

 

Из соотношения (2.12)

 

,

тогда:

 

.                                   (2.14)

Информация о работе Одномерные установившиеся потоки жидкости и газа в пористой среде