Автор работы: Пользователь скрыл имя, 09 Мая 2013 в 20:09, контрольная работа
Подсистемы машинной графики и геометрического моделирования (МГиГМ) занимают центральное место в машиностроительных САПР-К. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму деталей, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, момент инерции, цвета поверхности и т.п.).
Покажем, что в точках
сопряжения для первой и второй производных
аппроксимирующего выражения
Для участка [Q|+1 Qi+2] в той же точке Qi+| имеем t = 0 и
т. е. равенство производных в точке сопряжения на соседних участках подтверждает непрерывность касательного вектора и кривизны. Естественно, что значение х координаты х точки Qi+1 аппроксимирующей кривой на участке [Q QI+1].
равно значению х , подсчитанному для той же точки на участке [Qi+1 Q,+2], но значения координат узловых точек х и х+] аппроксимирующей и аппроксимируемой кривых не совпадают.
Аналогично можно получить выражения для форм Безье и 5-сплайнов применительно к поверхностям с учетом того, что вместо (3.48) используются кубические зависимости от двух переменных.