Представление знаний в интеллектуальных системах

Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 21:38, реферат

Краткое описание

В рамках направления "Представление знаний" решаются задачи, связанные с формализацией и представлением знаний в памяти интеллектуальной системы (ИС). Для этого разрабатываются специальные модели представления знаний и языки для описания знаний, выделяются различные типы знаний. Изучаются источники, из которых ИС может черпать знания, и создаются процедуры и приемы, с помощью которых возможно приобретение знаний для ИС.

Содержание

Введение 3
1. Данные и знания 4
2. Особенности знаний. Переход от Базы Данных к Базе Знаний 5
3. Формальные и неформальные модели представления знаний 7
4. Системы приобретения знаний от экспертов 11
5. Формализация качественных знаний 14
Заключение 17
Список использованных источников 18

Вложенные файлы: 1 файл

ИисОтчет9.doc

— 217.00 Кб (Скачать файл)

Для знаний, входящих в  базу знаний, можно считать, что множество A образуют все информационные единицы, которые введены в базу знаний извне, а с помощью правил вывода из них выводятся новые производные знания. Другими словами, формальная система представляет собой генератор порождения новых знаний, образующих множество выводимых в данной системе знаний. Это свойство логических моделей делает их притягательными для использования в базах знаний. Оно позволяет хранить в базе лишь те знания, которые образуют множество A, а все остальные знания получать из них по правилам вывода.

Сетевые модели. В основе моделей этого типа лежит конструкция, названная ранее семантической сетью. Сетевые модели формально можно задать в виде H = <I, C1, C2, ..., Cn, Г>. Здесь I есть множество информационных единиц; C1, C2, ..., C- множество типов связей между информационными единицами. Отображение Г задает между информационными единицами, входящими в I, связи из заданного набора типов связей.

В зависимости от типов связей, используемых в модели, различают классифицирующие сети, функциональные сети и сценарии. В классифицирующих сетях используются отношения структуризации. Такие сети позволяют в базах знаний вводить разные иерархические отношения между информационными единицами. Функциональные сети характеризуются наличием функциональных отношений. Их часто называют вычислительными моделями, т.к. они позволяют описывать процедуры "вычислений" одних информационных единиц через другие. В сценариях используются каузальные отношения, а также отношения типов "средство - результат", "орудие - действие" и т.п. Если в сетевой модели допускаются связи различного типа, то ее обычно называют семантической сетью.

Продукционные модели. В моделях этого типа используются некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей - описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов. Таким образом, в продукционных моделях процедурная информация явно выделена и описывается иными средствами, чем декларативная информация. Вместо логического вывода, характерного для логических моделей, в продукционных моделях появляется вывод на знаниях.

Фреймовые модели. В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называетсяпротофреймом. В общем виде она выглядит следующим образом:

(Имя фрейма:

Имя слота 1(значение слота 1)

Имя слота 2(значение слота 2)

. . . . . . . . . . . . . . . . . . . . . .

Имя слота К (значение слота К)).

Значением слота может быть практически что угодно (числа или математические соотношения, тексты на естественном языке или программы, правила вывода или ссылки на другие слоты данного фрейма или других фреймов). В качестве значения слота может выступать набор слотов более низкого уровня, что позволяет во фреймовых представлениях реализовать "принцип матрешки".

При конкретизации фрейма ему и  слотам присваиваются конкретные имена  и происходит заполнение слотов. Таким  образом, из протофреймов получаютсяфреймы - экземпляры. Переход от исходного протофрейма к фрейму - экземпляру может быть многошаговым, за счет постепенного уточнения значений слотов.

Например, структура табл. 1, записанная в виде протофрейма, имеет вид

(Список работников:

Фамилия (значение слота 1);

Год рождения (значение слота 2);

Специальность (значение слота 3);

Стаж (значение слота 4)).

Если в качестве значений слотов использовать данные табл. 1, то получится фрейм - экземпляр

(Список работников:

Фамилия (Попов - Сидоров - Иванов - Петров);

Год рождения (1965 - 1946 - 1925 - 1937);

Специальность (слесарь - токарь - токарь - сантехник);

Стаж (5 - 20 - 30 - 25)).

Связи между фреймами задаются значениями специального слота с  именем "Связь". Часть специалистов по ИС считает, что нет необходимости  специально выделять фреймовые модели в представлении знаний, т.к. в  них объединены все основные особенности моделей остальных типов.

Система ИИ в определенном смысле моделирует интеллектуальную деятельность человека и, в частности, - логику его  рассуждений. В грубо упрощенной форме наши логические построения при  этом сводятся к следующей схеме: из одной или нескольких посылок (которые считаются истинными) следует сделать "логически верное" заключение (вывод, следствие). Очевидно, для этого необходимо, чтобы и посылки, и заключение были представлены на понятном языке, адекватно отражающем предметную область, в которой проводится вывод. В обычной жизни это наш естественный язык общения, в математике, например, это язык определенных формул и т.п. Наличие же языка предполагает, во - первых, наличие алфавита (словаря), отображающего в символьной форме весь набор базовых понятий (элементов), с которыми придется иметь дело и, во - вторых, набор синтаксических правил, на основе которых, пользуясь алфавитом, можнопостроить определенные выражения.

Логические выражения, построенные  в данном языке, могут быть истинными  или ложными. Некоторые из этих выражений, являющиеся всегда истинными. Объявляются аксиомами (или постулатами). Они составляют ту базовую систему посылок, исходя из которой и пользуясь определенными правилами вывода, можно получить заключения в виде новых выражений, также являющихся истинными.

Если перечисленные условия  выполняются, то говорят, что система  удовлетворяет требованиям формальной теории. Ее так и называют формальной системой(ФС). Система, построенная на основе формальной теории, называется также аксиоматической системой.

Формальная теория должна, таким  образом, удовлетворять следующему определению: всякая формальная теория F = (A, V, W, R), определяющая некоторую аксиоматическую систему, характеризуется:

    • наличием алфавита (словаря), A,
    • множеством синтаксических правил, V,
    • множеством аксиом, лежащих в основе теории, W,
    • множеством правил вывода, R.

Исчисление высказываний (ИВ) и  исчисление предикатов (ИП) являются классическими  примерами аксиоматических систем. Эти ФС хорошо исследованы и имеют прекрасно разработанные модели логического вывода - главной метапроцедуры в интеллектуальных системах. Поэтому все, что может и гарантирует каждая из этих систем, гарантируется и для прикладных ФС как моделей конкретных предметных областей. В частности, это гарантии непротиворечивости вывода, алгоритмической разрешимости (для исчисления высказываний) и полуразрешимости (для исчислений предикатов первого порядка).

ФС имеют и недостатки, которые заставляют искать иные формы представления. Главный недостаток - это "закрытость" ФС, их негибкость. Модификация и расширение здесь всегда связаны с перестройкой всей ФС, что для практических систем сложно и трудоемко. В них очень сложно учитывать происходящие изменения. Поэтому ФС как модели представления знаний используются в тех предметных областях, которые хорошо локализуются и мало зависят от внешних факторов.

 

 

4. Системы приобретения знаний от экспертов

Одно из первых рассмотрении интервью как метода инженерии знаний проведено в [Newel 1972], Проблемы, возникающие при извлечении экспертных знаний, некоторые психологи связывают с так называемой когнитивной защитой. В [Kelly, 1985] была развита теория человеческого познания, основанная на понятии "персональных конструктов", которые человек создает и пытается приспособить к реалиям мира. В [Bose, 1984] теория персональных конструктов использована для создания системы извлечения экспертных знаний и показала свою способность успешно преодолевать когнитивную защиту, т. е. нежелание экспертов достичь четкого и осознанного ими истолкования основных понятий, отношений между понятиями и приемов решения задач в интересующей инженера по знаниям проблемной области.

Методы интервьюирования эксперта предметной области знаний с использованием нескольких различных стратегий применены при создании системы TEIRESIAS [Davis, 1982]. В [Kahn et aL, 1984] выделено восемь различных стратегий интервью, в [Kahn et aL, 1985] на основе этих стратегий исследуется возможность автоматического интервьюирования. Автоматизации метода протокольного анализа посвящены работы [Waterman, 1971, 1973; Krippendorf, 1980].

В [Kahn et al. 1985] на примере диагностической  системы MORE; описана техника интервьюирования, направленная на выяснение следующих сущностей, гипотез, симптомов, условий, связей и путей. Гипотеза - событие идентификация которого имеет своим результатом диагноз. Симптом-событие, являющееся следствием существования гипотезы, наблюдение которого приближает последующее принятие гипотезы. Условие - событие или некоторое множество событий, которое не является непосредственно симптоматическим для какой-либо гипотезы, но которое может иметь диагностическое значение для некоторых других событий. Связи-соединения сущностей (в том числе, других связей). Путь- выделенный тип связи, который соединяет гипотезы с симптомами. В соответствии с этим используются следующие стратегии интервью: дифференциация гипотез, различение симптомов, симптомная обусловленность, деление пути и др.

Дифференциация гипотез направлена на поиск симптомов, которые обеспечивают более точное различение гипотез. Наиболее мощными в этом смысле являются те симптомы, которые происходят из одного диагностируемого события, Различение симптомов выявляет специфические характеристики симптома, которые, с одной стороны, идентифицируют его как следствие некоторой гипотезы, с другой-противопоставляют другим. Симптомная обусловленность направлена на выявление негативных симптомов, т. е. симптомов, отсутствие которых имеет больший диагностический вес, чем их присутствие. Деление пути обеспечивает нахождение симптоматических событий, которые лежат на пути к уже найденному симптому. Если такой симптом существует, то он имеет большое диагностическое значение, чем уже найденный.

Аналогичные стратегии интервьюирования эксперта использованы при создании инструментальной диагностической системы ИДИС [Голубев и др., 1987].

В системе KRITON [Diederich et aL, 1987] для приобретения знаний используются два источника: эксперт с его знаниями, полученными на практике (эти знания, как правило, неполны, отрывочны, плохо структурированы); книжные знания, документы, описания инструкции (эти знания хорошо структурированы и фиксированы традиционными средствами). Для извлечения знаний из первого источника в KRITON применена техника интервью, использующая стратегии репертуарной решетки и разбиения на ступени. При этом применяется прием переключения стратегий: если при предъявлении тройки семантически связанных понятий эксперт не в состоянии назвать признак, отличающий два из них от третьего, система запускает стратегию разбиения на ступени и предпринимает попытку выяснения таксономической структуры этих понятий с целью выявления признаков, их различающих.

Для выявления процедурных знаний эксперта в KRITON применен метод протокольного анализа. Он осуществляется в пять шагов. На первом шаге протокол делится на сегменты на основании пауз, которые делает эксперт в процессе записи. Второй шаг-семантический анализ сегментов, формирование высказываний для каждого сегмента. На третьем шаге из текста выделяются операторы и аргументы. Далее делается попытка поиска по образцу в базе знаний для обнаружения переменных в высказываниях (переменная вставляется в высказывание, если соответствующая ссылка в тексте не обнаружена). На последнем шаге утверждения упорядочиваются в соответствии с их появлением в протоколе.

Анализ текста используется в KRITON для выявления хорошо структурированных  знаний из книг, документов, описаний, инструкций.

В [Morik, 1987] описан метод выявления модели предметной области. Первая фаза-формирование инженером знаний грубой модели предметной области путем определения предикатов и сортов их возможных аргументов и сообщения системе фактов об области, выразимых этими предикатами. Система выявляет свойства предикатов и устанавливает отношения между ними, структурируя таким образом предметную область. На второй фазе с помощью метазнаний (общих структур), отражающих особенности человеческого мышления, осуществляется проверка соответствия фактов предикатам, индуктивный вывод правил из фактов, вывод правил из других правил.

В системах SIMER и ДИАПС [Осипов. 1987; Osipov et aL, 1987] основным методом приобретения знаний является автоматизированное интервьюирование эксперта, которое управляется знаниями, приобретенными системой. В системах SIMER и ДИАПС не выявляется предварительная модель области. Все объекты (события) и их атрибуты определяются в режиме прямого интервьюирования эксперта. Предполагается только, что на множестве объектов могут быть заданы ряд отношений из известного (конечного) множества: "элемент-множество", "часть - целое", "пример - прототип", отношения структурного сходства объектов, структурной иерархии и некоторые другие. Все отношения попарно различаются формальными свойствами. Так, отношений структурного сходства не обладает транзитивностью, но симметрично. Отношение структурной иерархии. напротив, не обладает симметричностью, однако транзитивно. На выяснение этих и ряда других свойств отношений и объектов направлено интервью.

В частности, для установления структурного сходства на первой фазе интервью для каждого вновь вводимого понятия эксперту предлагается указать (с помощью меню) те понятия предметной области, с которыми может быть связано данное (без спецификации отношения). Затем в процессе интервью для каждой пары понятий (из выделенных на первой фазе) связь специфицируется, устанавливаются свойства и тип отношения, в число элементов которого включается исследуемая пара. Так, для включения некоторой пары понятий Х и У. о которых эксперт сообщил, что Х влияет на У (например Х увеличивает возможность У), в число элементов некоторого отношения Я, обладающего среди прочих свойств симметричностью, необходимо задать эксперту вопрос: "Увеличивает ли У возможность ?". При положительном ответе на этот вопрос (и если прочие свойства уже установлены и удовлетворяют определению отношения Я) пара (X, У) включается в R, Для установления структурного сходства и структурной иерархии понятий используются стратегии подтверждения сходства и разбиения на ступени.

Информация о работе Представление знаний в интеллектуальных системах