Проектирование сети

Автор работы: Пользователь скрыл имя, 15 Января 2013 в 14:52, курсовая работа

Краткое описание

Задание на проектирование посвящено проектированию вычислительных сетей (ВС) как основы комплекса технических средств информационных систем различных предметных областей (организаций, предприятий, учреждений и их подразделений). При выполнении расчёта студент должен:
провести сравнительный анализ различных вариантов архитектуры ВС с системных позиций по основным параметрам: стоимость, быстродействие, надежность, информационная безопасность;
разработать структурную схемы локальных ВС, сети кампуса с учетом выбранного варианта подключения к Internet, а также структуру аппаратного и программного обеспечения для предоставления выбранного перечня услуг ВС;

Вложенные файлы: 1 файл

Пособие для РГР по вычисл сетям (1).doc

— 1.92 Мб (Скачать файл)

При разработке возможных вариантов  конфигурации сети следует помнить, что они должны быть составлены на основе требований, сформулированных для выполнения функций информационной системы в заданной предметной области, и должны удовлетворять условию совместимости аппаратных и программных средств. Для анализа вариантов составляется таблица, аналогичная таблице 2, в которой приводятся характеристики 2 - 3 вариантов конфигурации локальной вычислительной сети. Оценка различных вариантов архитектуры ВС производится с системных позиций по основным критериям: стоимость, быстродействие, надежность, информационная безопасность. Далее производится выбор наилучшего варианта по основным критериям. При этом в зависимости от установленных целей проектирования вычислительной сети выбирается один главный критерий эффективности достижения цели, а остальные критерии учитываются в качестве ограничений. Например, возможна следующая постановка задачи оптимизации: обеспечить минимальную задержку передачи сообщений в сети при выполнении установленных ограничений на значения показателей надежности сети, стоимости сети. Для решения поставленной задачи могут использоваться известные методы решения задачи выбора. Такими методами являются: метод анализа иерархий Саати , метод взвешивания [7], метод ветвей и границ [8].При решении задачи выбора в качестве исходных данных могут использоваться как числовые характеристики, так и качественные экспертные оценки.

Можно качественно определить степень  предпочтений пользователя при оценке качества и важности услуг ВС, используя  для этого лингвистические переменные, приведенные в таблице 3.

Таблица 3 К оценке качества и важности услуг ЛВС

Лингвистическая переменная

Описание лингвистической  переменной

Отлично

требуемые функции выполняются  безупречно

Очень хорошо

соответствует всем основным требованиям и обеспечивает существенные преимущества

Хорошо

соответствует основным требованиям  и имеет дополнительные возможности

Удовлетворительно

соответствует основным требованиям

Плохо

имеет ограниченные возможности

Неприемлемо

не соответствует минимальным  требованиям или не обеспечивает данной возможности


В качестве инструментального средства для решения задачи выбора конфигурации можно использовать пакет программ Logical Decision.

 

6.2.3. Разработка структурной схемы  ЛВС

На данном этапе необходимо для выбранного варианта конфигурации ЛВС разработать архитектуру ЛВС:

  • разработать структурную схему ЛВС,
  • выбрать типы компонент ЛВС;
  • рассчитать количество компонент ЛВС,
  • составить спецификацию ЛВС.

 При этом должны учитываться  правила соединения компонентов ЛВС, основанные на стандартизации сетей и их ограничения, специфицированные изготовителями компонент ЛВС.

6..2.4 Теоретико - расчетная часть

Теоретико - расчетная часть посвящена  проверочному  расчету корректности локальных сетей по временным параметрам и включает в себя теоретическое описание и непосредственный расчет.

6..2.4.1 Теоретическое описание

сущности проблем проверки корректности локальных сетей по временным  параметрам содержит изложение основных правил и ограничений при проектировании ЛВС, а также случаев, когда необходимо проводить проверочный расчет.

 

ПРАВИЛА ПРОЕКТИРОВАНИЯ ЛВС РАБОЧЕЙ ГРУППЫ  [3]

 

Здесь рассмотрены общие правила проектирования ЛВС, не содержащих в своем составе Switch-ей (коммутаторов) и WAN оборудования (т.е. портов связи с глобальными сетями).

Исторически сложилось  так, что основная масса сетей  создавалась по технологии 10Base-2 и 10Base-T. На сегодняшний день основными типами ЛВС являются сети, построенные на базе “витой пары”. Поэтому основной акцент здесь будет делаться на правила проектирования сетей стандарта 10Base-T, а также особенности и ограничения, накладываемые на эти правила при совместном их применении с другими стандартами (10Base-F, 100Base-TX, 100Base-T4 и 100VG-AnyLAN).

Вначале несколько основополагающих терминов и определений:

  • Стандарт IEEE 802.3 (стандарт Ethernet) определяет локальную вычислительную сеть как коллизионную область или домен коллизий.
  • Коллизия - разрушение пакета данных в канале во время передачи. Когда узел посылает пакет, он одновременно проверяет, не произошла ли во время передачи коллизия. Если коллизия происходит, то попавшие в нее узлы прекращают передачу, выдерживают паузу в течении случайного промежутка времени и повторяют передачу. Отсутствие обнаружения коллизии указывает узлу, что передача пакета прошла успешно.
  • Домен коллизий – это часть сети Ethernet, все узлы которой распознают коллизию, независимо от того, в какой части сети она возникла. Домен коллизий всегда соответствует одной разделяемой среде. Мосты, коммутаторы и маршрутизаторы делят сеть на несколько доменов коллизий.
  • Время, по истечении которого пакет гарантированно проходит по каналам связи от источника до получателя и обратно называется “максимальным периодом кругового обращения сообщения” (maximum round-trip time). Это время определяет самую худшую ситуацию, при которой пакет пройдет от узла-отправителя на одном конце сети до места возникновения коллизии на другом конце сети и при этом сигнал о коллизии гарантированно дойдет до узла - отправителя.
  • Геометрические размеры сети, которые отвечают требованиям “максимального периода кругового обращения сообщения” и определяют коллизионную область. ЛВС будет функционировать правильно только в том случае, когда все ее узлы могут быть оповещены о коллизии в течение максимального периода кругового обращения.

Топология сети

Выбор подходящей топологии  часто является трудной задачей. Сегодня наиболее популярной топологией стала “звезда-шина”, но и она  не всегда отвечает требованиям пользователей. В принципе, существует несколько критериев, помогающих выбрать ту или другую топологию, но они не дают однозначного решения, ибо не учитывают ограничений, накладываемых, например самим зданием, в котором монтируется сеть:

  • НАДЕЖНОСТЬ. Если нужна очень надежная сеть со встроенной избыточностью, наиболее подходят топологии “кольцо” или “звезда-кольцо”.
  • СТОИМОСТЬ. В стоимость реализации определенной топологии входят, как минимум, три составляющие: а) установка, б) расширение, в) сопровождение (обслуживание, поиск неисправностей и отказов). Приходится иметь в виду, что монтаж и проверка работоспособности кабельных подсистем всегда во много раз выше его стоимости.
  • НАЛИЧИЕ РАНЕЕ ПРОЛОЖЕННЫХ КОММУНИКАЦИЙ. Если в здании существуют ранее проложенные кабельные сегменты и их использование в принципе возможно, то целесообразно их использование в двух случаях: 1) объем коммуникаций велик и находится в хорошем состоянии, 2) не противоречит закладываемым в проект сети принципам.

Правила проектирования сетей стандарта 10Base-T

Технология 10Base-T была стандартизована только в 1990 году (стандарт IEEE 802.3). 10Base-T предусматривает построение ЛВС путем использования кабельных сегментов для создания точечных каналов связи (point-to-point links). Тем самым основной топологией становится уже не “шина”, как в 10Base-5 и 10Base-2, а “звезда”. Геометрические размеры сетей, построенных по варианту 10Base-T также зависят от затухания сигнала в передающей среде и от времени распространения сигнала. Определив другой тип кабеля, соединители и другую топологию сети, 10Base-T остается тем же самым Ethernet-ом (в логическом смысле), что и 10Base-5. В логическом смысле, концентратор - Hub это просто сегмент коаксиального кабеля из технологии 10Base-5 или 10Base-2.

Правила применения технологии 10Base-T:

  1. сеть стандарта 10Base-Т может содержать максимум четыре концентратора (правило 4-х хабов);
  2. компьютеры подключаются к концентраторам с помощью UTP (STP) кабеля категории 3, 4 или 5;
  3. подключение компьютеров к концентраторам осуществляется с помощью коннекторов RJ-45 и кабелей “прямого соединения”;
  4. соединение концентраторов между собой осуществляется с помощью кабелей “перекрестного соединения” или, при использовании Up-Link-портов, - с помощью кабелей прямого соединения;
  5. максимальная длина UTP сегмента - 100 м;
  6. максимальное количество компьютеров, подключенных ко всем концентраторам ЛВС, - 1024;
  7. минимальная длина кабельного сегмента - 2.5 м;
  8. максимальная общая длина сети - 500 м.

 

 

Примеры применения технологии 10Base-T

Простейший вариант  применения технологии 10Base-Т

Рисунок 5

Рисунок 6-  Простейший пример применения технологии 10Base-T

Простейший вариант  сети, построенной по технологии 10Base-T - сеть с одним концентратором (см. рис. 6). Самые распространенные маломощные концентраторы имеют 8 портов. С их помощью можно организовать сеть малого офиса, которая не будет сильно расти и не нуждается в сетевом администрировании. Такое решение приемлемо для территориально сосредоточенных сетей (в пределах нескольких смежных помещений). Нужно иметь в виду, что цена “за порт” у многопортовых концентраторов ниже. Поэтому, если планируется объединить в сеть около 20-ти компьютеров, целесообразнее приобрести один 24-х портовый концентратор, чем три 8-ми портовых.

Возможности технологии 10Base-Т

Один из вариантов  геометрически предельных топологических схем ЛВС с применением технологии 10Base-T изображен на рисунке 7 Он не содержит ни одной пары узлов, между которыми было бы более 4-х концентраторов.

Рисунок 7-  Вариант предельной топологии с применением технологии 10Base-T  

 Резюме правил и рекомендаций стандарта IEEE 802.3 (Ethernet)

  • Максимальное число подключений на сегменте кабеля:

по стандарту 10Base-T (кабель с витыми парами)

 

2

по стандарту 10Base-FL (оптический кабель)

 

2


  • Максимальная длина кабеля в метрах:

по стандарту 10Base-T (кабель с витыми парами)

 

100

по стандарту 10Base-FL (оптический кабель)

 

до 2000 м (mm)

до 4000...20000 м (sm)


  • Максимальное количество компьютеров в сети без применения специальных средств - 1024.
  • Максимальное количество концентраторов или повторителей в любом сочетании между самыми дальними узлами сети - 4 (если среди них есть хотя бы один Fiber-Optic Hub, то 5).
  • Максимальное количество мостов, коммутаторов или маршрутизаторов с функциями мостов между любыми двумя узлами сети - 7. Это рекомендация протокола связного дерева (Spanning Tree) по стандарту IEEE 802.1. При этом, когда путь данных проходит через мост (коммутатор), отсчет концентраторов и кабельных сегментов начинается сначала. Мост (коммутатор) изолирует трафик локальной сети.
  • При проектировании сетей стандартов 10Base-T необходимо придерживаться требований, предъявляемых стандартом IEEE 802.3. С другой стороны, выполняя конкретные проекты, часто не удается обойтись этими правилами и приходится заниматься непосредственными поверочными расчетами задержек распространения сигналов. Однако, если при разработке сети удалось соблюсти все перечисленные выше требования, сеть будет успешно функционировать и Заказчик не выскажет Вам никаких претензий.
  • Четкое распознавание коллизий – необходимое условие корректной работы сети Ethernet. Если станция не распознает коллизию до окончания передачи кадра, она решит, что кадр передан верно, и приготовится передавать следующий кадр. Таким образом, произойдет потеря кадра. Говоря точнее, искаженная информация будет повторно передана каким – либо протоколом верхнего уровня, например, транспортным или прикладным, но повтор будет через большой интервал времени по сравнению с микросекундными интервалами протокола Ethernet, что привет к снижению полезной пропускной способности.

Для подключения к сети удаленных групп могут быть использованы концентраторы с дополнительным волоконно-оптическим портом. Существуют три разновидности реализации такого порта:

  • вставляемый в гнездо расширения slide-in-микротрансивер,
  • вставляемый в гнездо разъема AUI навесной микротрансивер,
  • постоянный оптический порт.

Оптические концентраторы применяются в качестве центрального устройства распределенной сети с большим количеством отдельных удаленных рабочих станций и небольших рабочих групп. Порты такого концентратора выполняют функции усилителей и осуществляют полную регенерацию пакетов. Существуют концентраторы с фиксированным количеством подключаемых сегментов, но некоторые типы концентраторов имеют модульную конструкцию, что позволяет гибко подстраиваться к существующим условиям. Чаще всего концентраторы и репитеры представляют собой автономные блоки с отдельным питанием.

Для надежного распознавания коллизий необходимо, чтобы Tmin>=PDV, где Tmin –время передачи кадра минимальной длины (576 битовых интервалов). PDV (Path Delay Value)– время, за которое сигнал дважды распространится до самого дальнего узла сети (в прямом направлении – неискаженный сигнал; в обратном – сигнал с коллизией, возникшей на подходе к дальнему узлу, что соответствует худшему случаю – максимальному времени обнаружения коллизии источником). При этом условии протокол Ethernet источника обнаружит коллизию еще до того, как закончит передачу кадра, и , соответственно, примет решение о его повторной передаче. Требования, предъявляемые стандартом IEEE 802.3, подобраны таким образом, что условие Tmin>=PDV гарантированно выполняется и коллизия всегда распознается.

Стандартом Ethernet IEEE 802.3 (Ethernet) предусматривается соблюдение еще одного требования при передаче кадров в сети. Сокращение межкадрового интервала PVV (Path Veriability Value) при прохождении кадров через все повторители не должно превышать 49 битовых интервалов. При отправке кадра узлы обеспечивают межкадровое расстояние 96 битовых интервалов. Тогда после прохождения повторителей оно должно быть не менее         96-49=47 битовых интервалов.

Соблюдение этих двух требований обеспечит работу сети даже при нарушении простых правил (правила 4-х хабов; правила 5-4-3 и др). Комитет 802.3 приводит исходные данные о задержках, вносимых элементами сети для расчета корректности сети в таких случаях. Эти расчеты особенно нужны для сетей из смешанных кабельных систем, на которые простые правила не рассчитаны. При этом максимальная длина сегмента должна строго соответствовать соответствующей технологии.

Информация о работе Проектирование сети