Автор работы: Пользователь скрыл имя, 15 Января 2013 в 14:52, курсовая работа
Задание на проектирование посвящено проектированию вычислительных сетей (ВС) как основы комплекса технических средств информационных систем различных предметных областей (организаций, предприятий, учреждений и их подразделений). При выполнении расчёта студент должен:
провести сравнительный анализ различных вариантов архитектуры ВС с системных позиций по основным параметрам: стоимость, быстродействие, надежность, информационная безопасность;
разработать структурную схемы локальных ВС, сети кампуса с учетом выбранного варианта подключения к Internet, а также структуру аппаратного и программного обеспечения для предоставления выбранного перечня услуг ВС;
Сеть перегружена. Ее разбивают на подсети так, чтобы трафик был сосредоточен внутри подсетей, разгружая таким образом всю сеть, без необходимости увеличивать ее общую пропускную способность.
Разделение на подсети может быть продиктовано соображениями безопасности, т.к. трафик в общей сети может быть перехвачен. Организация подсетей обеспечивает способ, позволяющий предохранить подразделение от несанкционированного доступа.
Имеется оборудование, которое использует различные технологии организации сетей, и есть потребность связать их (как упомянуто выше).
Организизация подсетей. Для организации подсетей необходимо выполнить ряд шагов, которые будут пояснены ниже:
В качестве примера предположим, что организуется подсеть класса C с номером: 192.168.1.0
Это предусматривает максимум 254 связанных интерфейсов (хостов), плюс обязательный сетевой номер (192.168.1.0) и широковещательный адрес (192.168.1.255).
Установка физической связанности. Чтобы выполнить физическое размещение, необходимо установить правильную инфраструктуру для всех устройств, которые следует связать.
Необходимо использовать коммутационные элементы, чтобы связать различные сегменты вместе (маршрутизаторы, коммутаторы, хабы и т.д.).
Детальная конфигурация для
каждого применения определяется конкретными
условиями и особенностями
Установление размеров подсети. Каждая сеть имеет два адреса, не используемых для сетевых интерфейсов (компьютеров) - сетевой номер сети (нули в поле адреса хоста) и широковещательный адрес (единицы в поле адреса хоста). Когда организуются подсети, каждая из них требует собственный, уникальный IP адрес и широковещательный адрес.
Таким образом, разделение сети на две подсети приводит к тому, что образуются два адреса сети и два широковещательных адреса - увеличивается число "неиспользуемых" адресов интерфейсов; создание 4-х подсетей приведет к образованию 8-и неиспользуемых адресов интерфейсов и т.д.
Фактически, самая маленькая пригодная для использования подсеть состоит из 4 IP адресов:
При использовании масок одинаковой длины можно получить одинаковые размеры подсетей, однако, можно делить сеть на подсети, или объединять подсети в более крупную подсеть.
При разработке сети целесообразно организовать минимальное число отдельных локальных сетей, которые были бы совместимы по управлению, физическому размещению, по оборудованию и безопасности.
Определение сетевой маски и сетевых адресов. Сетевая маска позволяет разделить сеть на несколько подсетей. Сетевая маска для исходной сети, не разделенной на подсети, - это просто четверка чисел, которая имеет все биты в полях сети, установленные в '1' и все биты в поле номера хоста, установленные в '0'.
Таким образом, для трех классов
сетей стандартные сетевые
Класс A (8 сетевых битов) : 255.0.0.0
Класс B (16 сетевых бита): 255.255.0.0
Класс C (24 сетевых бита): 255.255.255.0
Способ организации подсетей заимствует (один или более) биты номера хоста и интерпретирует эти заимствованные биты, как часть сетевых битов. Например, для сети класса C с сетевым номером 192.168.1.0 возможно несколько случаев:
Число
Число машин
подсетей на сеть Сетевая маска
2
126 255.255.255.128 (11111111.11111111.11111111.
4
62 255.255.255.192 (11111111.11111111.11111111.
8
30 255.255.255.224 (11111111.11111111.11111111.
16
14 255.255.255.240 (11111111.11111111.11111111.
32
6 255.255.255.248 (11111111.11111111.11111111.
64
2 255.255.255.252 (11111111.11111111.11111111.
Выбрав подходящую сетевую маску, необходимо определить сетевые, широковещательные адреса и диапазоны адресов для получившихся сетей. Рассматривая сетевые номера класса C и отражая только заключительную часть адреса сети, можно получить:
Сетевая маска Подсетей Адр. Шир.вещат. МинIP МаксIP Хостов Всего хостов подсети адрес адрес адрес
------------------------------
128 2 0 127 1 126 126
128 255 129 254 126 252
192 4 0 63 1 62 62
64 127 65 126 62
128 191 129 190 62
192 255 193 254 62 248
224 8 0 31 1 30 30
32 63 33 62 30
64 95 65 94 30
96 127 97 126 30
128 159 129 158 30
160 191 161 190 30
192 223 193 222 30
224 255 225 254 30 240
При увеличении числа подсетей сокращается число доступных адресов для компьютеров.
Проектируя конкретную сеть (предприятия, кампуса), теперь можно назначить адреса машин, сетевые адреса и сетевые маски.
Маршрутизация. Для примера, в процессе проектирования сети здания принято решение раздели сеть класса C с адресом IP 192.168.1.0 на 4 подсети (в каждой пригодно для использования 62 IP адреса). Однако, две из этих подсетей целесообразно объединить в общую большую сеть, таким образом, формируются три физических сети.
Network Broadcast Netmask
192.168.1.0 192.168.1.63 255.
192.168.1.64 192.168.1.127
182.168.1.128 192.168.1.255
Заметим, что последняя сеть имеет только 124 сетевых адреса (не 126, как ожидалось бы от сетевой маски) и является сетью, объединившую две подсети. Компьютеры в других двух сетях интерпретируют адрес 192.168.1.192 как сетевой адрес 'несуществующей' подсети. Подобно они будут интерпретировать 192.168.1.191 как широковещательный адрес 'несуществующей' подсети.
Так, если используются 192.168.1.191 или 192 как адреса хостов в третьей подсети, тогда компьютеры двух малых подсетей не смогут связаться с ними.
Это иллюстрирует важный момент при работе с подсетями - пригодные для использования адреса определяются САМОЙ МАЛОЙ подсетью в этом локальном адресном пространстве.
Таблицы маршрутизации. Маршрутизатор для этой сети будет иметь три сетевых карты к локальным сетям и четвертый интерфейс для связи с Internet (который является шлюзом по умолчанию).
Пусть маршрутизатор использует самый первый доступный IP адрес в каждой подсети. Конфигурация сетевых карт будет следующей:
Interface Сеть PortIP Address Netmask
eth0 192.168.1.0 192.168.1.1
eth1 192.168.1.64 192.168.1.
eth2 192.168.1.128 192.168.1.
Таблица маршрутизации при данной конфигурации будет такой
Destination Gateway Genmask Iface
192.168.1.0 0.0.0.0 255.255.
192.168.1.64 0.0.0.0 255.255.
192.168.1.128 0.0.0.0 255.255.
Организация кампусной сети. Кампусная сеть состоит обычно из сетевых структур нескольких корпусов зданий, принадлежащих одной организации. Структура сети строится на основе структурированной кабельной системы (СКС, стандарт ISO 11801). Сеть каждого здания обычно выглядит таким образом, что на каждом этаже организована горизонтальная подсистема, соединяющая рабочие станции с коммутационным центром этажа. Коммуникационный центр этажа кроме коммутационной стойки (или панели) использует активное сетевое оборудование – концентратор или коммутатор Для подключения рабочих станций целесообразно использовать витую пару категории 5 и сеть Ethernet или Fast Ethernet (с учетом перспективы развития). При большой протяженности этажа может быть организован дополнительный коммуникационный центр или использовано каскадное соединение концентраторов или коммутаторов. Напомним, что при каскадировании концентраторов необходимо соблюдение соответствующих правил ( 4-х хабов, 1 или 2-х хабов) или должен проводиться соответствующий расчет задержек (расчет PDV, PVV).
Перспективно использовать на этаже коммутаторы, в том числе способные поддерживать технологию VLAN. В некоторых конкретных случаях бывает целесообразно объединить в одном коммуникационном центре горизонтальные подсистемы смежных этажей.
Согласно методологии СКС
К такому коммутатору часто подключаются и централизованные серверы зданий, для связи с которыми часто предусматривают использование технологии Port trunking. Реализация каналов связи в вертикальных подсистемах обычно предусматривает использование витой пары категории 5 или оптоволокна (предпочтительно для многоэтажных зданий). В некоторых случаях из экономических соображений используется толстый коаксиальный кабель.
Объединение коммуникационных центров зданий, расположенных на значительных расстояниях (порядка 10 км и более), обычно производится с помощью сети FDDI на оптоволоконных каналах. При более компактном расположении зданий кампуса используется сеть на коммутаторах третьего уровня с распределенной магистралью, при чем коммутаторы зданий связываются по схеме «каждый с каждым», образуя структуру с избыточными связями. При этом коммутаторы зданий должны поддерживать технологию «Spanning Tree».Для повышения производительности, как и прежде, можно использовать технологию Port trunking. В соответствии со стандартом IEEE 802.3ad максимальное число каналов в транке – восемь.
Связь с внешней (глобальной) сетью осуществляется через выделенный внешний маршрутизатор, использующий внешние реальные IP адреса для выхода в глобальную сеть и технологию NAT или NAPT.
6.2.6 Спецификация ЛВС
По результатам проектирования составляется спецификация ЛВС. Пример спецификации ЛВС показан в таблице 6.
Таблица 6- Технические средства (ТС) вычислительной сети.
NNN |
Тип ТС |
Наименование ТС |
Цена ТС, у.е. |
Кол-во ТС, шт. |
Стоимость ТС, у.е. |
1 |
Сервер |
Компьютер Pentium 166 MMX, RAM 16 sdram, HDD 1.6 Gb, VM 14" mono |
783 |
1 |
|
2 |
Сетевой адаптер |
Ethernet 3COM |
95 |
50 |
475 |
3 |
Линия связи |
Кабель коаксиальный RG 58 |
0.6 1м |
700 м |
420 |
4 |
Активные концентраторы |
HUB 8-port 10Mbs |
175 |
4 |
740 |
5 |
Разъемы |
BNC connector |
2 |
100 |
200 |
6 |
Разъемы |
T - connector |
2 |
50 |
100 |
7 |
Сетевой принтер |
HP Laser Jet 5 |
1610 |
1 |
1610 |
Программное обеспечение | |||||
8 |
Сетевая операционная система |
MS Windows NT 4 Server |
4176 |
1 |
4176 |
9 |
Интегрированная офисная система |
4176MS OFFICE'97 RUS |
407 |
1 |
407 |