Автор работы: Пользователь скрыл имя, 14 Января 2013 в 22:43, реферат
Диалектическая спираль развития компьютерных технологий совершила свой очередной виток - опять, как и десять лет назад, в соответствии с требованиями жизни, в моду входят суперкомпьютерные архитектуры. Безусловно, это уже не те монстры, которые помнят ветераны - новые технологии и требовательный рынок коммерческих применений существенно изменили облик современного суперкомпьютера
1. ВВЕДЕНИЕ
2. СФЕРЫ ПРИМЕНЕНИЯ СУПЕРКОМПЬЮТЕРОВ
3. СУПЕРКОМПЬЮТЕРЫ В РОССИИ
4. СУПЕРКОМПЮЬТЕРЫ, КАК ЭТО?
5. ВСЕ НОВОЕ – ЭТО ХОРОШО ЗАБЫТОЕ СТАРОЕ
6. АРХИТЕКТУРА СОВРЕМЕННЫХ СУПЕРЭВМ
7. ОЦЕНКА ПРОИЗВОДИТЕЛЬНОСТИ СУПЕРЭВМ
8. ЗАКЛЮЧЕНИЕ
9. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА
Между тем отсутствие возможностей применения суперЭВМ сдерживает развитие отечественной науки и делает принципиально невозможным успешное развитие целых направлений научных исследований. Приобретение одногодвух, даже очень мощных, суперкомпьютеров не поможет решить данную проблему. И дело не только в стоимости их приобретения и затрат на поддержание работоспособности (включая электропитание и охлаждение). Существует еще целый ряд причин (например, доставка информации по компьютерной сети), препятствующих эффективному использованию суперЭВМ.
Более целесообразным представляется подход, предложенный российским Фондом фундаментальных исследований. Разработанная "Программа создания комплексных сетей связи и баз данных фундаментальной науки и образования" на 1995-1998 гг. предусматривает организацию целого ряда региональных и предметно-ориентированных суперкомпьютерных центров. В таких центрах могут быть инсталлированы, например, относительно дешевые минисуперкомпьютеры, имеющие лучшее отношение стоимость/производительность. Собственно говоря, достаточно только обратиться к списку ТОР500, чтобы обнаружить явную тенденцию к вытеснению больших (и дорогих) суперЭВМ относительно недорогими суперкомпьютерами, которым уже сейчас под силу решение львиной доли потенциальных задач.
Что касается отечественных суперЭВМ, то без необходимой государственной поддержки проектов по их разработке не приходиться рассчитывать на создание промышленных образцов в ближайшие 1-2 года, и вряд ли такие компьютеры смогут составить основу парка суперЭВМ в создающихся сегодня отечественных суперкомпьютерных центрах.
Суперкомпьютеры - как это?
Ну что, похоже суперкомпьютеры и в самом деле имеют право на существование. Теперь нужно прояснить, по всей видимости, основной вертящийся на языке вопрос - почему они считают так быстро? Вариантов ответа может быть несколько, среди которых два имеют явное преимущество: развитие элементной базы и использование новых решений в архитектуре компьютеров.
Попробуем разобраться, какой из факторов является решающим в достижении современных фантастических показателей производительности. Для разрешения этого вопроса обратимся к историческим фактам. Известно, что на компьютере EDSAC (1949 г.), имевшего время такта 2мкс, можно было выполнить 2*n арифметических операций за 18*n мс, то есть в среднем 100 арифметических операций в секунду. Сравним с современным суперкомпьютером CRAY C90: время такта приблизительно 4нс, а пиковая производительность около 1 миллиарда арифметических операций в секунду.
Что же получается? Производительность компьютеров за этот период выросла в приблизительно в десять миллионов раз. Уменьшение времени такта является прямым способом увеличением производительности, однако эта составляющая (с 2мкс до 4нс) в общем объеме дает вклад лишь в 500 раз. Откуда же взялось остальное? Ответ очевиден - использование новых решений в архитектуре компьютеров, среди которых основное место занимает принцип параллельной обработки данных.
Данный принцип, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность. Оба вида параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения.
Параллельная обработка. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!
Конвейерная обработка. Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.
Идея конвейерной обработки
заключается в выделении
Казалось бы конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! В чем же дело? Ответ прост, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых (1) в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и (2) сделать это за то же время, что машина прежде находилась на конвейере. Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры, будь то Pentium II или PA-8200, MIPS R10000 или Power2 SuperChip используют тот или иной вид параллельной обработки. На презентациях новых чипов и в пресс-релизах корпораций это преподносится как последнее слово техники и передовой край науки, и это действительно так, если рассматривать реализацию этих принципов именно в рамках одного кристалла.
Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и, наконец, сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.
Все новое - это хорошо забытое старое.
Для того чтобы убедиться, что все основные нововведения в архитектуре современных процессоров на самом деле использовались еще со времен, когда ни микропроцессоров, ни понятия суперкомпьютеров еще не было, совершим маленький экскурс в историю, начав практически с момента рождения первых ЭВМ.
Все самые первые компьютеры, например, EDSAC, EDVAC, UNIVAC, сначала считывали данные последовательно бит за битом из памяти, а затем их аналогично обрабатывали в арифметическом устройстве.
1953 г. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал компьютер IBM 701. К слову будет сказано, наибольшую популярность в то время получила модель IBM 704 (1955 г.), проданной в количестве 150 экземпляров (!), в которой, помимо упомянутых особенностей, была впервые применена память на ферритовых сердечниках и аппаратное арифметическое устройство с плавающей точкой.
1958г. Процессоры первых компьютеров сами управляли вводом/выводом. Однако скорость работы самого быстрого внешнего устройства, а по тем временам это магнитная лента, была в 1000 раз меньше скорости процессора, поэтому во время операций ввода/вывода процессор фактически простаивал. В 1958г. к компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709. Данная модель получилась удивительно удачной, так как вместе с модификациями было продано около 400 экземпляров, причем последний был выключен в 1975 году - 20 лет существования!
1961г. Создается компьютер IBM STRETCH, имеющий две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка для согласования низкой скорости выборки из памяти и скорости выполнения операций.
1963г. В Манчестерском университете разработан компьютер ATLAS, использующий конвейерный принцип выполнения команд. Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции, позволившие уменьшить время выполнения команд в среднем с 6 мкс до 1,6 мкс. Справедливости ради надо отметить, что данный компьютер вообще оставил заметный след в истории развития вычислительной техники: помимо сказанного, в нем впервые была использована мультипрограммная операционная система, основанная на использовании виртуальной памяти и системы прерываний.
1964г. Фирма Control Data Corporation (CDC) при непосредственном участии одного из ее основателей, Сеймура Р.Крэя (Seymour R.Cray) выпускает компьютер CDC-6600 - первый компьютер, в котором использовалось несколько независимых функциональных устройств. Для сравнения с сегодняшним днем приведем некоторые параметры компьютера: время такта 100нс, производительность 2-3 млн. операций в секунду, оперативная память разбита на 32 банка по 4096 60-ти разрядных слов, цикл памяти 1мкс, 10 независимых функциональных устройств. Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM.
1969г. CDC выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами - сочетание параллельной и конвейерной обработки.
Матричные суперкомпьютеры
В 1967 г. группа Слотника, объединенная в Центр передовых вычислительных технологий (Center of Advanced Computation) при Иллинойском университете, приступила к практической реализации проекта векторной суперЭВМ с матричной структурой ILLIAC IV. Работы финансировались Министерством обороны США, а изготовление машины взяла на себя фирма Burroughs Corp. Техническая сторона проекта до сих пор поражает своей масштабностью: система должна была состоять из четырех квадрантов, каждый из которых включал в себя 64 процессорных элемента (ПЭ) и 64 модуля памяти, объединенных коммутатором на базе сети типа гиперкуб. Все ПЭ квадранта обрабатывают векторную инструкцию, которую им направляет процессор команд, причем каждый выполняет одну элементарную операцию вектора, данные для которой сохраняются в связанном с этим ПЭ модуле памяти. Таким образом, один квадрант ILLIAC IV способен одновременно обработать 64 элемента вектора, а вся система из четырех квадрантов - 256 элементов.
В 1972 г., после преодоления значительных проблем, связанных с практической реализацией проекта на аппаратном и программном уровнях, первая система ILLIAC IV была установлена в исследовательском центре NASA в Эймсе. Результаты ее эксплуатации в этой организации получили неоднозначную оценку. С одной стороны, использование суперкомпьютера позволило решить ряд сложнейших задач аэродинамики, с которыми не могли справиться другие ЭВМ. Даже самая скоростная ЭВМ для научных исследований того времени - Control Data CDC 7600, которую, к слову сказать, проектировал "патриарх суперЭВМ" Сеймур Крей (S.Cray), могла обеспечить производительность не более 5 млн. операций с плавающей точкой в секунду (MFLOPS), тогда как ILLIAC IV демонстрировала среднюю производительность примерно в 20 MFLOPS.
С другой стороны, ILLIAC IV так и не была доведена до полной конфигурации из 256 ПЭ; практически разработчики ограничились лишь одним квадрантом. Причинами явились не столько технические сложности в наращивании числа процессорных элементов системы, сколько проблемы, связанные с программированием обмена данными между процессорными элементами через коммутатор модулей памяти. Все попытки решить эту задачу с помощью системного программного обеспечения потерпели неудачу, в результате каждое приложение требовало ручного программирования передач коммутатора, что и породило неудовлетворительные отзывы пользователей.
Если бы разработчикам ILLIAC IV удалось преодолеть проблемы программирования матрицы процессорных элементов, то, вероятно, развитие вычислительной техники пошло бы совершенно другим путем и сегодня доминировали бы компьютеры с матричной архитектурой.
Однако ни в 60-х годах, ни позднее удовлетворительное и универсальное решение двух таких принципиальных проблем, как программирование параллельной работы нескольких сотен процессоров и при этом обеспечение минимума затрат счетного времени на обмен данными между ними, так и не было найдено. Выдвинув пионерскую задачу создания компьютера сверхвысокой производительности, разработчики ILLIAC IV первыми же оказались не в состоянии ответить на эти два принципиальных вопроса. Потребовалось еще примерно 15 лет усилий различных фирм по реализации суперЭВМ с матричной архитектурой, чтобы поставить окончательный диагноз: компьютеры данного типа не в состоянии удовлетворить широкий круг пользователей и имеют весьма ограниченную область применения, часто в рамках одного или нескольких видов задач (например, в системах обработки изображений, как ЭВМ STARAN фирмы Goodyear Aerospace). "Лебединой песней" матричных суперЭВМ стал компьютер BSP производства Burroughs, который проектировался как альтернатива векторно-конвейерным суперЭВМ фирмы Cray Research, но так и не увидел свет из-за очевидной неконкурентоспособности системы. Конечно, было бы большой ошибкой утверждать, что развитие суперЭВМ с матричной архитектурой не дало никаких положительных результатов. Во-первых, удалось доказать возможность практической реализации параллельной сверхскоростной обработки. Во-вторых, на волне интереса к матричным структурам была сформулирована достаточно стройная теоретическая база для построения коммутационных сетей, объединяющих множество процессорных элементов. В-третьих, в прикладной математике сформировалось самостоятельное направление по параллельным вычислениям. По мере освоения средств сверхскоростной обработки данных разрыв между совершенствованием методов векторизации программ, т.е. автоматического преобразования в процессе компиляции последовательных языковых конструкций в векторную форму, и чрезвычайной сложностью программирования коммутации и распределения данных между процессорными элементами привел к достаточно жесткой реакции пользователей в отношении матричных суперЭВМ - широкому кругу программистов требовалась более простая и "прозрачная" архитектура векторной обработки с возможностью использования стандартных языков высокого уровня типа FORTRAN. Решение было найдено в конце 60-х годов, когда фирма Control Data, с которой в то время сотрудничал Крей, представила машину STAR-100, основанную на векторно-конвейерном принципе обработки данных. Отличие векторно-конвейерной технологии от архитектуры матричных ЭВМ заключается в том, что вместо множества процессорных элементов, выполняющих одну и ту же команду над разными элементами вектора, применяется единственный конвейер операций, принцип действия которого полностью соответствует классическому конвейеру автомобильных заводов Форда. Если в матричном компьютере процессорные элементы можно представить как группу рабочих- универсалов, каждый из которых собирает автомобиль от шасси до обивки салона, то векторно-конвейерная обработка ассоциируется с бригадой узких специалистов, один из которых умеет привинчивать колеса, другой - устанавливать двигатель, третий - монтировать корпус, и т.д. Подобно автомобильному конвейеру Форда, векторно-конвейерная обработка способна обеспечить высокий темп выхода готовой продукции - результатов выполняемых операций, если каждый из "рабочих" (т. е. аппаратных блоков конвейера операций) выполняет порученную ему фазу команды с максимальной скоростью. Даже такая архаичная по современным понятиям суперЭВМ, как STAR- 100, показала предельную производительность на уровне 50 MFLOPS, что недоступно для большинства современных мэйнфреймов. При этом существенно, что векторно-конвейерные суперЭВМ значительно дешевле своих матричных "родственников". К примеру, разработка и производство ILLIAC IV обошлись в 40 млн. долл. при расходах на эксплуатацию порядка 2 млн. долл. в год, тогда как рыночная стоимость первых суперкомпьютеров фирм CRAY и Control Data находилась в пределах 10 - 15 млн. долл., в зависимости от объема памяти, состава периферийных устройств и других особенностей конфигурации системы.