Суперкомпьютеры. История создания

Автор работы: Пользователь скрыл имя, 14 Января 2013 в 22:43, реферат

Краткое описание

Диалектическая спираль развития компьютерных технологий совершила свой очередной виток - опять, как и десять лет назад, в соответствии с требованиями жизни, в моду входят суперкомпьютерные архитектуры. Безусловно, это уже не те монстры, которые помнят ветераны - новые технологии и требовательный рынок коммерческих применений существенно изменили облик современного суперкомпьютера

Содержание

1. ВВЕДЕНИЕ
2. СФЕРЫ ПРИМЕНЕНИЯ СУПЕРКОМПЬЮТЕРОВ
3. СУПЕРКОМПЬЮТЕРЫ В РОССИИ
4. СУПЕРКОМПЮЬТЕРЫ, КАК ЭТО?
5. ВСЕ НОВОЕ – ЭТО ХОРОШО ЗАБЫТОЕ СТАРОЕ
6. АРХИТЕКТУРА СОВРЕМЕННЫХ СУПЕРЭВМ
7. ОЦЕНКА ПРОИЗВОДИТЕЛЬНОСТИ СУПЕРЭВМ
8. ЗАКЛЮЧЕНИЕ
9. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

Вложенные файлы: 1 файл

Суперкомпьютеры.doc

— 168.00 Кб (Скачать файл)

Второй существенной особенностью векторно-конвейерной  архитектуры является то, что конвейер операций имеет всего один вход, по которому поступают операнды, и один выход результата, тогда как в матричных системах существует множество входов по данным в процессорные элементы и множество выходов из них. Другими словами, в компьютерах с конвейерной обработкой данные всех параллельно исполняемых операций выбираются и записываются в единую память, в связи с чем отпадает необходимость в коммутаторе процессорных элементов, ставшем камнем преткновения при проектировании матричных суперЭВМ.

 В 1972 году С.Крэй покидает CDC и основывает свою компанию Cray Research, которая в 1976г. выпускает первый векторно-конвейерный компьютер CRAY-1: время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

На этом означенный экскурс  в историю можно смело закончить, поскольку роль параллелизма и его  влияние на развитие архитектуры  компьютеров уже очевидна.

Архитектура современных суперЭВМ

Рассмотрим типичные архитектуры суперЭВМ, широко распространенных сегодня, и приведем классическую систематику Флинна.

В соответствии с ней, все компьютеры делятся на четыре класса в зависимости от числа  потоков команд и данных. К первому  классу (последовательные компьютеры фон Неймана) принадлежат обычные  скалярные однопроцессорные системы: одиночный поток команд - одиночный поток данных (SISD). Персональный компьютер имеет архитектуру SISD, причем не важно, используются ли в ПК конвейеры для ускорения выполнения операций.

Второй класс характеризуется  наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому  архитектурному классу принадлежат  однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1. В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных - много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.

К третьему классу - MIMD - относятся  системы, имеющие множественный  поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.

Четвертый класс в  систематике Флинна, MISD, не представляет практического интереса,по крайней мере для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа - множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т.е. MIMD) - системам и означает, что несколько копий одной программы параллельно выполняются в разных процессорных узлах с разными данными.

Интересно также упомянуть  о принципиально ином направлении в развитии компьютерных архитектур - машинах потоков данных. В середине 80-х годов многие исследователи полагали, что будущее высокопроизводительных ЭВМ связано именно с компьютерами, управляемыми потоками данных, в отличие от всех рассмотренных нами классов вычислительных систем, управляемых потоками команд. В машинах потоков данных могут одновременно выполняться сразу много команд, для которых готовы операнды. Хотя ЭВМ с такой архитектурой сегодня промышленно не выпускаются, некоторые элементы этого подхода нашли свое отражение в современных суперскалярных микропроцессорах, имеющих много параллельно работающих функциональных устройств и буфер команд, ожидающих готовности операндов. В качестве примеров таких микропроцессоров можно привести HP РА-8000  и Intel Pentium Pro.

В соответствии с классификацией Флинна, рассмотрение архитектуры суперЭВМ следовало бы начать с класса SISD. Однако все векторно-конвейерные (в  дальнейшем - просто векторные) суперЭВМ имеют архитектуру "не меньше" SIMD. Что касается суперкомпьютерных серверов, использующих современные высокопроизводительные микропроцессоры, таких как SGI POWER CHALLENGE на базе R8000 или DEC AlphaServer 8200/8400 на базе Alpha 21164, то их минимальные конфигурации бывают однопроцессорными. Однако, если не рассматривать собственно архитектуру этих микропроцессоров, то все особенности архитектуры собственно серверов следует анализировать в "естественной" мультипроцессорной конфигурации. Поэтому начнем анализ суперкомпьютерных архитектур сразу с класса SIMD.

Векторные суперкомпьютеры [SIMD]

Среди современных суперЭВМ эту архитектуру имеют однопроцессорные векторные суперкомпьютеры. Практически  все они выпускаются также  в мультипроцессорных конфигурациях, относящихся к классу MIMD. Однако многие особенности архитектуры векторных суперЭВМ можно понять, рассматривая даже однопроцессорные системы.

Типичная схема однопроцессорного  векторного суперкомпьютера представлена на примере FACOM VP-200 японской фирмы Fujitsu . Похожую архитектуру имеют и другие векторные суперкомпьютеры, например, фирм Cray Research  и Convex . Общим для всех векторных суперкомпьютеров является наличие в системе команд векторных операций, например, сложение векторов, допускающих работу с векторами определенной длины, допустим, 64 элемента по 8 байт. В таких компьютерах операции с векторами обычно выполняются над векторными регистрами, что, однако, совсем не является обязательным. Наличие регистров маски позволяет выполнять векторные команды не над всеми элементами векторов, а только над теми, на которые указывает маска.

Конечно, в конкретных реализациях векторной архитектуры  в различных суперкомпьютерах имеются  свои модификации этой общей схемы. Так, например, в вычислительных системах серии VP компании Fujitsu аппаратно реализована поддержка возможности реконфигурации файла векторных регистров - можно, например, увеличить длину векторных регистров с одновременным пропорциональным уменьшением их числа.

Со времен Cray-1 многие векторные суперкомпьютеры, в том  числе ЭВМ серии VP от Fujitsu и серии S компании Hitachi, имеют важное средство ускорения векторных вычислений,называемое зацепление команд. Рассмотрим,например, следующую последовательность команд, работающих с векторными V-регистрами в компьютерах Cray:

V2=V0*V1

V4=V2+V3

Ясно, что вторая команда  не может начать выполняться сразу  вслед за первой - для этого первая команда должна сформировать регистр V2, что требует определенного  количества тактов. Средство зацепления позволяет, тем не менее, второй команде  начать выполнение, не дожидаясь полного завершения первой: одновременно с появлением первого результата в регистре V2 его копия направляется в функциональное устройство сложения, и запускается вторая команда. Разумеется, детали возможностей зацепления разных векторных команд отличаются у разных ЭВМ.

Что касается скалярной  обработки, то соответствующая подсистема команд в японских суперкомпьютерах Fujitsu и Hitachi совместима с IBM/370, что имеет  очевидные преимущества. При этом для буферизации скалярных данных используется традиционная кэш-память. Напротив, компания Cray Research, начиная с Сгау-1, отказалась от применения кэш-памяти. Вместо этого в ее компьютерах используются специальные программно-адресуемые буферные В- и Т-регистры. И лишь в последней серии, Cray T90, была введена промежуточная кэш-память для скалярных операций. Отметим, что на тракте оперативная память - векторные регистры промежуточная буферная память отсутствует, что вызывает необходимость иметь высокую пропускную способность подсистемы оперативной памяти: чтобы поддерживать высокую скорость вычислений, необходимо быстро загружать данные в векторные регистры и записывать результаты обратно в память.

До сих пор мы рассматривали  векторные ЭВМ, в которых операнды соответствующих команд располагаются в векторных регистрах. Кроме упоминавшихся компьютеров Fujitsu и Hitachi, векторные регистры имеют компьютеры серии SX другой японской фирмы NEC, в том числе наиболее мощные ЭВМ серии SX-4 , а также все векторные компьютеры как от Cray Research, включая C90, М90 и Т90, так и от Cray Computer, включая Cray-3 и Cray-4, и векторные минисуперЭВМ фирмы Convex серий Cl, С2, С3 и C4/XA.

Но некоторые векторные  суперЭВМ, например, IBM ES/9000, работают с  операндами-векторами, расположенными непосредственно в оперативной памяти. Скорее всего, такой подход является менее перспективным с точки зрения производительности, в частности, потому, что для поддержания высокого темпа вычислений для каждой векторной команды требуется быстрая выборка векторных операндов из памяти и запись результатов обратно.

Многопроцессорные векторные суперкомпьютеры (MIMD)

Все упомянутые векторные  суперкомпьютеры выпускаются в  многопроцессорных конфигурациях, которые относятся уже к классу MIMD.

В архитектуре многопроцессорных  векторных компьютеров можно отметить две важнейшие характеристики: симметричность (равноправность) всех процессоров системы и разделение всеми процессорами общего поля оперативной памяти. Подобные компьютерные системы называются сильно связанными. Если в однопроцессорных векторных ЭВМ для создания эффективной программы ее надо векторизовать, то в многопроцессорных появляется задача распараллеливания программы для ее выполнения одновременно на нескольких процессорах.

Задача распараллеливания  является, пожалуй, более сложной,поскольку в ней необходимо организовать синхронизацию параллельно выполняющихся процессов. Практика показала возможности эффективного распараллеливания большого числа алгоритмов для рассматриваемых сильно связанных систем. Соответствующий подход к распараллеливанию на таких компьютерах называется иногда моделью разделяемой общей памяти.

Многопроцессорные SMP-серверы на базе микропроцессоров RISC-архитектуры [MIMD]

Производительность некоторых  современных микропроцессоров RISC-архитектуры  стала сопоставимой с производительностью процессоров векторных компьютеров. Как следствие этого, появились использующие эти достижения суперЭВМ новой архитектуры, - сильно связанные компьютеры класса MIMD, представляющие собой симметричные многопроцессорные серверы с общим полем оперативной памяти. Этим перспективным системам имеет смысл уделить больше внимания, чем другим компьютерным архитектурам, поскольку соответствующий крут вопросов в отечественной компьютерной литературе обсуждался недостаточно полно.

Наиболее известные суперкомпьютерные серверы, имеющие подобную SMP-архитектуру - DEC AlphaServer 8200/8400  и SGI POWER CHALLENGE . Для них характерно применение высокопроизводительной системной шины, в слоты которой вставляются модули трех типов - процессорные, оперативной памяти и ввода-вывода. Обычные, более медленные шины ввода-вывода, например, PCI или VME64, подсоединяются уже к модулям ввода-вывода. Очевидно, что подобная конструкция обладает высокой степенью модульности и легко позволяет производить наращивание конфигурации, которое ограничивается только доступным числом слотов системной шины и ее производительностью.

В модулях памяти обычно используется технология DRAM, что позволяет  достигнуть больших объемов памяти при относительно низкой цене. Однако скорость обмена данными между процессорами и памятью в таких серверах во много раз ниже, чем пропускная способность аналогичного тракта в векторных суперЭВМ, где оперативная память строится на более дорогой технологии ЯВАМ. В этом состоит одно из основных отличий в подходах к суперкомпьютерным вычислениям, применяемым для многопроцессорных векторных ЭВМ и SMP-серверов. В первых обычно имеется относительно небольшое число векторных регистров, поэтому, как уже отмечалось, для поддержания высокой производительности необходимо быстро загружать в них данные или, наоборот, записывать из них информацию в оперативную память. Таким образом, требуется высокая производительность тракта процессор-память.

В SMP-серверах пропускная способность модулей памяти гораздо  ниже, а общая скорость обмена данными с процессорными модулями ограничивается также (хотя и высокой) пропускной способностью шины. К тому же системная шина может быть занята передачей данных за счет работы модулей ввода-вывода. Для иллюстрации порядков величин можно привести следующие данные: гарантированная пропускная способность системной шины TurboLaser в AlphaServer 8200/8400 составляет 1.6 Гбайт/с и 1.2 Гбайт/с - для шины POWERpath-2 в POWER CHALLENGE, а пропускная способность оперативной памяти в Сгау Т90 равна 800 Гбайт/с. Поэтому в SMP-серверах разработчики стремятся уменьшить саму потребность в обменах данными на тракте процессорыпамять. С этой целью вместо маленького по величине объема памяти векторных регистров (именно поэтому они требуют достаточно частой перезагрузки) микропроцессоры в суперкомпьютерных SMP-системах снабжаются кэш - памятью очень большого размера, например, по 4 Мбайт на микропроцессор в AlphaServer 8200/8400 и POWER CHAL ENGE. В результате для очень широкого спектра приложений удается достичь поставленной цели.

Современные компьютеры SMP-архитектуры и кластеры на их основе имеют во многом характеристики, сравнимые  с большими векторными суперЭВМ, за исключением пропускной способности  оперативной памяти; Если добавить к этому низкие эксплуатационные расходы на обслуживание SMP-систем, то становится понятно, почему применение этих гораздо более дешевых (по сравнению с векторными) суперкомпьютеров получило за последние 2 года широкое распространение.

Анализируемые здесь SMP-системы  не обязаны иметь шинную архитектуру. Вместо шины может использоваться коммутатор. Подобный подход применяется, например, внутри гиперузлов компьютеров Convex Exemplar SPP . Однако почти все сказанное в данном разделе сохраняет силу и в этом случае.

Информация о работе Суперкомпьютеры. История создания