Классические законы Г. Менделя. Мутационная теория де Фриза в аспекте видообразования

Автор работы: Пользователь скрыл имя, 01 Декабря 2013 в 07:52, контрольная работа

Краткое описание

Неодарвинизм - эволюционная концепция, созданная А. Вейсманом на раннем этапе развития генетики (в кон. 19 — нач. 20 вв.). В основе неодарвинизма лежит его учение, часто называемое вейсманизмом. В полемике с неоламаркизмом неодарвинизм обосновывает положение о том, что все особенности строения живых существ могут быть объяснены с точки зрения дарвиновской теории естественного отбора и нет необходимости в признании какой бы то ни было внутренней тенденции к развитию.

Содержание

Введение…………………………………………………………………………..….3
Классические законы Г. Менделя..………………………………………….…...3
Первый закон единобразия гибридов первого поколения………………………...4
Второй закон расщепления ……………………………………………………..…4
Третий закон независимого комбинирования (наследования) признаков………5
Условия существования законов………………………………………………..…6
Признание законов Менделя…………………………………………………….…6
Значение работ Менделя для развития генетики……………………………….…7
Мутационная теория де Фриза в аспекте видообразования ……………….….8
Деятельность Августа Вейсмана………………………………………………...13
Учение Августа Вейсмана…………………………………………………………..15
Основные положения учения Августа Вейсмана…………………………………16
Заключение ………………………………………………………………………….18
Вывод ………………………………………………………………………..............20
Список литературы ………………………………………………………………...21

Вложенные файлы: 1 файл

МОй реферат-верстка.doc

— 173.00 Кб (Скачать файл)

В эволюционной генетике, помимо энотеры, доводы в пользу множественных  одномоментных хромосомных перестроек получены при исследовании хромосомного полиморфизма у роющих грызунов — слепушонок группы Ellobius tancrei, относящихся к надвиду Е. talpinus. Здесь были открыты так называемые "робертсоновские веера" с варьированием в числе хромосом от 54 до 32. При этом получены доводы, что "54 и 32-хромосомные кариотипы должны были возникнуть за счет резкой скачкообразной перестройки всего кариотипа в целом, приведшей к одномоментному слиянию 16–20 акроцентрических хромосом и 8–10 метацентриков" (Воронцов, 1988, 1999).

Наконец, с точки зрения путей видообразования де Фриза следует считать первооткрывателем двух новых типов видообразования: 1) хромосомного, в частности полиплоидного и 2) гибридогенного. В случае гибридогенного видообразования один вид содержит два разных хромосомных комплекса, которые передаются потомству как целое и в разных комбинациях скрещивания "порождают" новые виды. Ученик и последователь де Фриза О. Реннер открыл, что геном вида Ое. lamarckiana, с которым работал де Фриз, состоит из двух транслокационных комплексов gaudens и velans. В них все 7 пар хромосом связаны взаимными обменами и передаются совместно как одна гигантская хромосома.

При скрещивании растений вида Ое. lamarckiana (комплексы velans/gaudens) и Ое. strigosa (комплексы deprimens/stringers) получаются все четыре возможные комбинации, имеющие статус вида и распространенные в природных популяциях (Грант В., 1984, с. 368). Другими словами, в каждом скрещивании происходит "порождение видов", которое можно наблюдать воочию!

Открытые у энотеры  транслокационные гибридные видовые системы, названные комплексами Реннера, обладают еще двумя поразительными особенностями. Во-первых, летальностью каждого из них в гомозиготе, так что возникает сбалансированная перманентная гетерозиготность, когда выживают только гетерозиготы. Именно этот, открытый в опытах де Фриза феномен, натолкнул Г. Меллера на идею использовать метод сбалансированных леталей для создания генетического метода количественного учета возникновения мутаций у дрозофилы. Во-вторых, один из реннеровских комплексов передается только через яйцеклетку, а другой — только через пыльцевые клетки, т. е. в гаметогенезе у гибридогенного вида происходит элиминация одного из геномов.

Кратко суммируем значение работ де Фриза для генетики видообразования  и эволюционной теории. Г. де Фриз установил неравномерность темпа эволюционного процесса, наличие вспышек мутаций, которые происходят в "мутационные периоды". В период этих вспышек возникают скачкообразные мутации, резко меняющие облик растений, вызывающие резкие изменения в системе воспроизведения, в результате чего сальтационно возникают формы видового ранга. Подобные сальтационные изменения могут происходить повторно. В опытах Г. де Фриза и его учеников и последователей на энотере было открыто хромосомное видообразование (полиплоидия) и гибридогенные виды, образованные на основе транслокационных комплексов.

Справедливо считается, что "классическая дарвиновская концепция понимает видообразование  как постепенный градуалистический  процесс" (Воронцов, 19886). Генетические исследования де Фриза доказали возможность  хромосомного сальтационного (полиплоидия) и гибридогенного видообразования. Оно оказалось повсеместно распространенным у растений. У покрытосемянных растений около 52–58% видов являются полиплоидами, по преимуществу это аллополиплоиды, растения объединяющие геномы разных видов. Причем, с такими сложными переплетениями полового, бесполого, гибридного размножения, с такими поразительными системами естественной хромосомной инженерии, что приходится расширить концепцию вида до разных по емкости видовых единиц (Грант, 1984, Малецкий, 1995).

Ведущее концептуальное открытие в этой области было сделано в 1917 году датским генетиком О. Винге, который предположил, что у межвидовых гибридов в случае удвоения у них числа хромосом, могут восстановиться мейоз и плодовитость. "Настоящее исследование имеет непосредственное отношение к этой идее. Оно может рассматриваться как экспериментальное обоснование теории гибридного происхождения полиплоидных видов", — таково введение к классической работе Г. Д. Карпеченко (1927). Он впервые синтезировал новую неизвестную в природе видовую форму Raphanobrassica, константный полиплоидный межродовой гибрид между редькой и капустой. Совершенно справедливо Н. Н. Воронцов (1999) называет синтез рафанобрассики первым случаем конструирования нового генома, того, что в конце 70-х стало называться генетической инженерией.

Через три года шведский генетик  Арне Мюнтцинг впервые осуществил ресинтез дикорастущего в природе аллополиплоидного вида пикульника рода Galeopsis. Природная хромосомная инженерия создает гибридогенные полиплоидные комплексы видов, открытые и изученные американским ботаником Ледьярдом Стеббинсом. В этих комплексах геномы нескольких диплоидных исходных видов могут вступать между собой во всевозможные гибридные аллотетраплоидные комбинации. Объединяться могут сразу несколько геномов, так что предком одного вида может ни один, а несколько видов, как, например, у обычной мягкой пшеницы, у видов хлопчатника (Грант, 1984).

Неожиданно выяснилось, что гибридогенное, сходное в принципе с энотерой, видообразование регулярно встречается в ряде групп позвоночных и беспозвоночных животных. Гибридогенное видообразование описано уже у 50 видов позвоночных (Боркин, Даревский, 1980, 1989; Кирпичников, 1988; Tunner, Heppich-Turmer, 1991; Даревский, 1995). Оно принимает три основные формы: партеногенез (спермин не нужны для развития яйцеклеток видов-гибридов); гиногенез (спермин нужны лишь для активации развития, но развитие происходит на основе женских гамет и наследование матроклинно); и собственно гибридогенез, когда гибридный вид образуется на основе гибридных зигот, но один из родительских геномов селективно элиминируется в клетках полового пути в ходе гаметогенеза и мейоза.

Гибридогенез оказался широко распространен  у скальных ящериц рода Lacerta, живущих в горных районов Закавказья. Среди 18 близких видов комплекса L. saxicola 7 имели гибридогенное происхождение. Все они состояли из партеногенетических самок, способных размножаться без самцов. Но они способны также скрещиваться со своими собратьями из двуполых видов и порождать новые гибридогенные виды. В последнем варианте примерно в 10% случаев возникают триплоиды. Причем у некоторых групп ящериц, вьетнамских гекконов и агам, триплоиды оказались плодовитыми Поскольку гибридогенез здесь является нормой, то (1) одни и те же партеновиды порождаются вновь и вновь в разное время и (2) одни и те же двуполые виды способны вступать в разные гибридогенные связи и порождать таким образом разные виды! (Даревский, Гречко, Куприянова, 1999).

У животных обнаружено также удивительное явление избирательной элиминации одного из геномов получило название "геномное исключение". У гибридного вида хромосомы одного из родительских видов как бы одалживаются для построения соматических тканей. Вот почему было предложено именовать такой способ видообразования как "кредитогенез" (Боркин, Даревский, 1980). Элиминация одного из родительских геномов в клетках полового пути может быть названа также как "геномоцид". Это явление было описано и у растений в случае отдаленных гибридов ячменя. Природный гибридогенез в сочетании с геномоцидом в зародышевом пути был обнаружен у некоторых видов беспозвоночных.

Особенно поразительной оказалась  гибридогенная система у палочников рода Bacillus, где сосуществуют пять способов воспроизведения (Giorgi, 1992; Mantovani, Scali, 1992):

1) обычное бисексуальное размножение, 2) гибридогенез, 3) партеногенез, 4) гиногенез и 5) андрогенез — первый случай такого рода, обнаруженный как регулярное событие в природных популяциях (схема на рис. 1).

Рис. 1. Гибридогенез у  видов палочника (род Bacillus) как пример недарвиновского видообразования, открытого на энотере Г. де Фризом. R и r обозначают геномы вида В. rossius у самок и самцов, G — геном В. grandii (no Mantovani, Scali, 1992; Giorgi, 1992).

 

 

4.  Деятельность Августа Вейсмана

Август Вейсман (1834-1914) большую часть своей жизни состоял профессором зоологии во Фрейбурге. Кроме целого ряда довольно крупных специальных работ в области зоологии, он известен главным образом как автор многочисленных трудов по вопросам эволюции и наследственности, которые позволяют поставить его имя рядом с именем Геккеля в Германии. Как мы сейчас увидим, Вейсман является во многом даже оригинальнее последнего, так как он не ограничился одной пропагандой учения Дарвина, а придал ему ту форму, которую некоторые называют, и не без основания, вейсманизмом, так как здесь теория подбора приобретает наиболее выраженную и притом всеобъемлющую форму. Вейсман опубликовал довольно большое число трудов и постепенное развитие его взглядов удобнее проследить в хронологическом порядке.

 Говоря о первой работе Вейсмана, направленной против миграционной теории Морица Вагнера, но в ней не содержится еще ничего особенно характерного для последующих взглядов Вейсмана. Гораздо интереснее в этом отношении его другое произведение - «Этюды по эволюционной теории», вышедшие в 1875-1876 гг.

 В них содержится, прежде всего, ряд чрезвычайно интересных наблюдений и опытов Вейсмана по вопросам сезонного диморфизма у чешуекрылых, развития окраски и рисунка их гусениц, о превращении аксолотля в амблистому и т. д. Однако все эти исследования были предприняты Вейсманом, по его собственным словам, для того, чтобы решить вопрос, достаточно ли допустить для объяснения превращений организмов только те принципы, на которых основывался Дарвин, т. е. изменчивость, наследственность, борьбу за существование и корреляцию, или же нужно принять еще и наличие особой неизвестной внутренней силы развития, как это делали Негели, Келликер, Аскенази, Гартман и Губер, дававшие этой силе различные названия.

 В дальнейшем Вейсман подробно разбирает взгляд Гартмана, будто основы теории Дарвина - изменчивость, наследственность и корреляция - не являются чисто механическими принципами, и решительно высказывается против него. Безграничная изменчивость, по его мнению, отнюдь не составляет постулата для теории подбора, а «определенно направленные» вариации совершенно не доказывают существования филетической жизненной силы, т. е. внутреннего принципа совершенствования. Наследственность представляет собой такой же механический процесс, как питание и размножение. Таким образом, и изменчивость, и наследственность, и корреляция не только могут, но и должны рассматриваться чисто механически, пока не доказано, что в них скрыто что-либо иное, кроме обычных физико-химических сил.

 Таким образом, допущение внутренней тенденции к развитию, по мнению Вейсмана, не вызывается никакой необходимостью. Но что же тогда направляет общий ход эволюционного процесса? Исключительно те влияния, которые испытывают организмы со стороны окружающей их среды. Вот что говорит он поэтому вопросу: «Первым и, быть может, наиболее важным фактором для всякого превращения является физическая природа самого организма». Тем не менее последняя не содержит в себе никакой тенденции к изменяемости: это своего рода статический момент в эволюции; индивидуальная же изменчивость основывается на неодинаковых внешних влияниях, которые действуют на организмы, и это условие является динамическим моментом эволюционного процесса. «Без изменения внешнего мира,- заканчивает Вейсман, - не могло бы быть никакого развития органических форм».

 В 1882 г. появилась первая из статей Вейсмана по вопросам наследственности под заглавием «О продолжительности жизни». Центральным пунктом ее является вопрос - что представляет собой смерть? Автор отказывается видеть в ней свойство, присущее организмам, как таковым, и рассматривает ограниченную продолжительность жизни, характеризующую большинство организмов, как приспособительное явление, ибо «неограниченное существование особи было бы совершенно нецелесообразной роскошью».

 Ход мыслей Вейсмана таков. Простейшие одноклеточные существа по самой природе потенциально бессмертны: они размножаются путем деления, и тело одной такой особи при размножении целиком переходит в тела получающихся из нее новых особей, чем обеспечивается непрерывность жизни в той же форме. Нормальной, т. е. вытекающей из чисто внутренних причин, смерти у подобных низших существ еще нет. Откуда же берет свое начало смерть многоклеточных животных и растений, которые, несомненно, произошли от одноклеточных бессмертных существ? Это произошло в связи с разделением труда в их теле, в частности, с появлением двух сортов клеток: соматических, обслуживающих функцию питания и другие стороны жизнедеятельности организма, и половых, или пропагаторных, предназначенных для размножения. Так как сохранение бессмертия за всеми элементами многоклеточного организма было бы не экономно, то оно, т. е. бессмертие, и сделалось уделом лишь половых клеток, которые столь же бессмертны (конечно, потенциально), как и одноклеточные существа, а соматические клетки утратили эту способность - «смерть стала возможной, и мы видим, что она действительно появилась». Таким образом, по мнению Вейсмана, естественная смерть возникла лишь с появлением многоклеточного строения, благодаря обособлению половых элементов, для которых только и необходимо бессмертие, от всех остальных - т. е. «только с точки зрения полезности мы и можем понять необходимость смерти» - явления приспособления многоклеточных существ.

 Чрезвычайно важное значение имеет статья Вейсмана 1883 г. под названием «О наследственности», в которой он рассматривает главным образом вопрос о наследовании приобретенных свойств, положительное решение которого не вызывало до тех пор почти ни у кого никаких сомнений. Здесь впервые им ясно формулируется основное положение его теории - ненаследование приобретенных свойств.

4.1.  Учение Августа Вейсмана

В дальнейшем Вейсман подробно останавливается  на положительной стороне своего учения. По его мнению, изменения, как  жизненных условий, так и самих организмов происходят самыми малыми шагами и весьма длительно, почему вся эволюция организмов совершается путем суммирования этих мельчайших изменений в процессе естественного подбора. У всех животных и растений следующим поколениям передаются лишь такие особенности, зачатки которых имеются уже в зародыше, вернее в его наследственном веществе - зародышевой плазме. Отсюда вытекает и положение о ненаследовании приобретенных свойств, тем более что «до сих пор нет ни одного факта, который действительно доказывал бы, что приобретенные свойства могут передаваться по наследству»3.

Информация о работе Классические законы Г. Менделя. Мутационная теория де Фриза в аспекте видообразования