Принципы Паули и Периодическая система Д.И. Менделеева

Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 22:30, реферат

Краткое описание

Цель: разобраться в строение Периодической системы Менделеева, в сути принципа запрета Паули и доказать их практическое значение и актуальность.

Вложенные файлы: 1 файл

КСЕ.doc

— 249.50 Кб (Скачать файл)

Первый период (n = 1, l = 0) состоит из двух элементов H (1s1) и He (1s2).

Во втором периоде (n = 2, l = 0, 1) заполняются s- и p-орбитали от Li до Ne. Элементы называются соответственно s- и p-элементами.

В третьем периоде появляются пять d-орбиталей (n = 3, l = 0, 1, 2). Пока они вакантны, и третий период, как и второй, содержит восемь p-элементов элементов от Na до Ar.

Следующие за аргоном калий и  кальций имеют на внешнем уровне 4s-электроны (четвертый период). Появление 4s-электронов при наличии свободных 3d-орбиталей обусловлено экранированием ядра плотным 3s23p6-электронным слоем. В связи с отталкиванием от этого слоя внешних электронов для калия и кальция реализуются [Ar]4s1- и [Ar]4s2-состояния. Сходство K и Ca с Na и Mg соответственно, кроме чисто «химического» обоснования, подтверждается также электронными спектрами. При дальнейшем увеличении заряда у следующего за кальцием скандия 3d-состояние становится энергетически более выгодным, чем 4p, поэтому и заселяется 3d-орбиталь (см. приложение 3). Из анализа зависимости энергии электрона от порядкового номера элемента В. М. Клечковский сформулировал правило, согласно которому энергия атомных орбиталей возрастает по мере увеличения суммы (n + l). При равенстве сумм сначала заполняется уровень с меньшим n и большим l, а потом с большим n и меньшим l. Так у K и Ca заполняется 4s-орбиталь (4 + 0 = 4), а потом у Sc заполняется 3d-орбиталь (3 + 2 = 5).

Приведенные рассуждения  подтверждаются экспериментальными данными  об изменении энергии s-, p-, d- и f-орбиталей в зависимости от порядкового номера элемента. Как следует из рис. 1.3, значения энергии различных состояний зависит от заряда ядра Z, и чем больше Z, тем меньше различаются эти состояния по энергиям. Характер этого различия таков, что кривые, выражающие изменение энергии, пересекаются. Так для элементов K и Ca (Z = 19 и 20) энергия 3d-орбиталей выше, чем 4p, а для элементов с Z ≥ 21 энергия 3d-орбиталей ниже, чем 4p. Начиная со скандия (Z = 21) заполняется 3d-орбиталь, а во внешнем слое остаются 4s-электроны. Поэтому в четвертом периоде в ряду от Sc до Zn все десять 3d-элементов – металлы с низшей степенью окисления, как правило, 2, за счет внешних 4s-электронов. Общая электронная формула этих элементов – 3d1–104s1–2. Для хрома и меди наблюдается проскок (или провал) электрона на d-уровень: Cr – 3d54s1, Cu – 3d104s1. Такой проскок с ns- на (n – 1)d-уровень наблюдается также у Mo, Ag, Au, Pt и у других элементов и объясняется близостью энергий ns- и (n – 1)d-уровней и стабильностью наполовину и полностью заполненных уровней.

Образование катионов d-элементов связано с потерей, прежде всего внесших ns- и только затем (n – 1)d-электронов.

Дальше в четвертом  периоде после десяти d-элементов  появляются p-элементы от Ga (4s24p1) до Kr (4s24p6).

Пятый период повторяет четвертый – в нем также 18 элементов, и 4d-элементы, как и 3d образуют вставную декаду (4d 1–105s 0–2).

В шестом периоде после лантана (5d16s2) – аналога скандия и иттрия следуют 14 4f-элементов – лантаноидов. Свойства этих элементов очень близки, поскольку идет заполнение глубоколежащего (n – 2)f-подуровня.                                              

 Общая формула лантаноидов  4f 2–145d 0–16s 2.

После 4f-элементов заполняются 5d- и 6p-орбитали.

Седьмой период отчасти повторяет шестой. 5f-элементы называются актиноидами. Их общая формула 5f 2–146d 0–17s2. Далее следуют еще 6 искусственно полученных 6d-элементов незавершенного седьмого периода.

История создания Периодической системы

 

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.

Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и  о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.

Решающий этап его  раздумий наступил 1 марта 1869 года (14 февраля  по старому стилю). Днем раньше Менделеев  написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.

В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.

За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства. Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.

После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства. Через некоторое время домочадцы услышали, как из кабинета стало доноситься: "У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!". Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение. Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов. Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be2O3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.

Постепенно Дмитрий  Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию  их атомных масс, выказывают явную  периодичность физических и химических свойств. В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.

Вечером 1 марта 1869 года он набело переписал составленную им таблицу  и под названием "Опыт системы  элементов, основанной на их атомном  весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).

Так был открыт Периодический  закон, современная формулировка которого такова: Свойства простых веществ, а  также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.

Отпечатанные листки с таблицей элементов Менделеев  разослал многим отечественным и  зарубежным химикам и только после  этого выехал из Петербурга для обследования сыроварен.

До отъезда он еще  успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи "Соотношение свойств с  атомным весом элементов" - для  публикации в Журнале Русского химического  общества и для сообщения на предстоящем заседании общества.

18 марта 1869 года Меншуткин,  который был в то время делопроизводителем  общества, сделал от имени Менделеева  небольшой доклад о Периодическом  законе. Доклад сначала не привлек  особого внимания химиков, и  Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича "Естественная система элементов и применение ее к указанию свойств некоторых элементов", Зинин изменил свое мнение и написал Менделееву: "Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин"3.  Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co - Ni, Te - I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.

Периодический закон Д.И.Менделеева

 

Закон открыт и сформулирован  Д.И.Менделеевым: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от атомных весов элементов». Закон создан на основе глубокого анализа свойств элементов и их соединений. Выдающиеся достижения физики, главным образом разработка теории строения атома, дали возможность раскрыть физическую сущность периодического закона: периодичность в изменении свойств химических элементов обусловлена периодическим изменением характера заполнения электронами внешнего электронного слоя по мере возрастания числа электронов, определяемого зарядом ядра. Заряд равен порядковому номера элемента в периодической системе. Современная формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда  ядра атомов». Созданная Д.И.Менделеевым в 1869-1871 гг. периодическая система является естественной классификацией элементов, математическим отражением периодического закона.

Менделеев не только первый точно сформулировал этот закон  и представил содержание его в виде таблицы, которая стала классической, но и всесторонне обосновал его, показал его огромное научное значение, как руководящего классификационного принципа и как могучего орудия для научного исследования.

Физический смысл периодического закона. Был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация периодического закона — кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z. Какого-либо общего математического выражения периодического закона  не существует. Периодический закон  имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря периодическому закону многие научные поиски (например, в области изучения строения вещества — в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. Периодический закон — яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.

Физический этап развития периодического закона можно в свою очередь разделить на несколько стадий:

1.  Установление делимости атома на основании открытия электрона и радиоактивности (1896-1897);

2.  Разработка моделей строения атома (1911-1913);

3.  Открытие и разработка системы изотопов (1913);

4.  Открытие закона Мозли (1913), позволяющего экспериментально определять заряд ядра и номер элемента в периодической системе;

5.  Разработка теории периодической системы на основании представлений о строении электронных оболочек атомов (1921-1925);

6.  Создание квантовой теории периодической системы (1926-1932).

Предсказание  существования неизвестных элементов

 

Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев  оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из, несомненно, недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замком", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Затем предсказал существование  еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г. )

В 1875 году французский  химик Поль-Эмиль Лекок де Буабодран  открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Менделеев точно предсказал свойства экаалюминия: его атомную  массу, плотность металла, формулу  оксида El2O3, хлорида ElCl3, сульфата El2(SO4)3. После открытия галлия эти формулы стали записывать как Ga2O3, GaCl3 и Ga2(SO4)3. Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной    29,8о С. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

Среднее содержание Галлий в земной коре относительно высокое, 1,5-10-30% по массе, что равно содержанию свинца и молибдена. Галлий — типичный рассеянный элемент. Единственный минерал  Галлий — галдит  CuGaS2,  очень  редок. На воздухе при обычной температуре Галлий стоек. Выше 260°С в сухом кислороде наблюдается медленное окисление (плёнка окиси защищает металл). В серной и соляной кислотах галлий растворяется медленно, в плавиковой — быстро, в азотной кислоте на холоду Галлий устойчив. В горячих растворах щелочей Галлий медленно растворяется. Хлор и бром реагируют с Галлий на холоду, иод — при нагревании. Расплавленный Галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами Отличительная особенность Галлий — большой интервал жидкого состояния (2200° С) и низкое давление пара при температурах до 1100—1200°С.. Геохимия Галлий тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлий в литосфере заключена в минералах алюминия. Содержание Галлий в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Галлий наблюдаются также в сфалеритах (0,01—0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах. Широкого промышленного применения Галлий пока не имеет. Потенциально возможные масштабы попутного получения Галлий в производстве алюминия до сих пор значительно превосходят спрос на металл.

Информация о работе Принципы Паули и Периодическая система Д.И. Менделеева