Парадокс "Лжец"

Автор работы: Пользователь скрыл имя, 07 Июня 2012 в 15:02, реферат

Краткое описание

Парадокс лжеца - один из наиболее известных логиче­ских парадоксов. В простейшем его варианте человек произносит одну фразу: «Я лгу». Или говорит: «Высказывание, которое я сей­час произношу, является ложным». Или: «Это высказывание лож­но». Если высказывание ложно, то говорящий сказал правду и, зна­чит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то его высказывание ложно. Оказывается, таким образом, что, если гово­рящий лжет, он говорит правду, и наоборот. Традиционная лаконичная формулировка парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду

Содержание

1. Введение 3
2. Формулировка парадокса 4
3. Решение "психологией" 5
4. Решение Бертрана Рассела 5
5. Решение по теории множеств 6
6. Решение в логике предикатов 6
7. Решение в многозначной логике 7
8. Решение в двузначной логике 8
9. Решение в аксиоматическом методе 8
10. Заключение

Вложенные файлы: 1 файл

реферат логика.doc

— 73.50 Кб (Скачать файл)

Зная этот факт, можно придумать еще одно решение. Берем фразу "я лгу". Для того, чтобы избежать ситуации, когда в этой фразе некоторые части истинны, а некоторые ложны (как в решении Рассела), мы вынуждены уточнить ее: "я во всем лгу". Пусть это - ложь. Тогда истиной будет: "я не во всем лгу". Или: "я кое в чем говорю правду". Из этого утверждения нельзя вывести, что в данном случае все части утверждения ложные. А без этого мы не получим противоречия с исходной посылкой и не получим парадокса. В самом деле, может быть, как в решении Рассела, одна половина - ложь, а другая - правда. Тогда слишком категоричное утверждение "я во всем лгу" - действительно ложно, никаких противоречий не видно, и мы другим путем пришли к тому же выводу, что и Рассел.

Итак, использование  более универсальной логики тоже позволяет решить парадокс.

 

  1. Решение в многозначной логике
 

Согласно логике Лукасевича, мы не всегда можем говорить: "истина" и "ложь". Вместо этого  иногда нам приходится признать, что  в какой-то части фраза истина, а в какой-то части - нет. Степень  истинности выражается величиной от 0 (абсолютная ложь) до 1 (абсолютная истина). Отрицание в логике Лукасевича выполняется вычитанием из единицы: ~X = 1 - X.

Тогда пусть  фраза "я лгу" истинна на 0,5. Это значит, что ее отрицание - тоже истина на 0,5. Вспоминаем решение Рассела. Там тоже половина ответов - ложная, а половина - истинная. Пришли к тому же выводу еще одной дорогой.

Очень похоже выглядит решение в другой многозначной логике: трехзначной. Там есть три степени  истинности: "да", "нет" и "не знаю" (или "истина", "ложь" и "неопределенно"). Между истиной и ложью есть третье, промежуточное по смыслу значение. Оно и является правильным ответом на вопрос парадокса (отрицание "не знаю" дает "не знаю").

Вообще, как вы понимаете, в жизни помимо черного и белого, есть много промежуточных оттенков. Так же, как помимо истины и лжи, есть много промежуточных состояний вроде "правда, но не во всем". Поэтому логика Лукасевича - более точный вариант, трехзначная - менее точная, а двузначная - еще менее. А бывает еще точнее, чем логика Лукасевича. Когда же мы пытаемся приблизить величину 0,5 величинами 0 и 1, то вынуждены применять всякие ухищрения, чтобы не исказить смысл. Вроде того, что делим истинность фразы на две равные части. Одной половине назначаем истинность 0, а другой - 1. Если же мы попытаемся выбрать только 0 или 1, то неизбежно проигнорируем важную часть смысла. Ну и придем к парадоксу, как следствие.  
 
 
 

8. Решение в двузначной логике 

Я предложил  решение в булевой алгебре (она  же - двузначная логика), которое получило на форуме наилучшие отзывы. При этом мы не вводим новые условия, не изменяем их и остаемся в пределах предполагаемых ответов: "да" и "нет"; а также в пределах предполагаемой логики: двузначной. В литературе я такого решения не встречал, но в принципе, оно довольно близко к остальным, так как исходит из общей идеи: не закрывать глаза на то, что в этой фразе содержится на самом деле несколько фраз-утверждений.

Итак: "я лгу". Более того, все скрытые смыслы фразы: "я лгу, что я лгу", "я лгу, что я лгу, что я лгу" и так далее - тоже ложь. Обозначим через X простейшую из этих фраз "я лгу". Остальные выразим через нее и составим систему уравнений:

X = ложь  
(X = ложь) = ложь  
((X = ложь) = ложь) = ложь  
(((X = ложь) = ложь) = ложь) = ложь  
...

Получаем систему из бесконечного количества уравнений. Обратите внимание, не высказываний, а уравнений. В этом - вся соль. Если высказывание может быть истинным или ложным, то уравнение (или система уравнений) не может быть истинным или ложным. Оно может иметь решение или не иметь. Например, уравнение

x = x + 1

решений не имеет. Наша система уравнений  тоже не имеет решений. Это означает буквально следующее: на заданный вопрос нельзя ответить ни "да", ни "нет". Поскольку ни вариант "X = истина", ни вариант "X = ложь" не подходят. Этот вывод согласуется с остальными решениями, поскольку все они так или иначе отказываются давать однозначный ответ "да" или "нет".

Решение в стиле  программирования

Sova предложил  еще один вариант: ограничить  количество уравнений. Конечно, это не избавляет нас от парадокса, но зато приближает к реальности. Вряд ли человек, произнося слова "я лгу", в самом деле рассматривает бесконечное количество скрытых высказываний и осознает, что все они - ложны. То есть, таким образом мы формализуем процесс произнесения парадоксальной фразы, описываем программу, по которой рассуждает "лжец".  

9. Решение в аксиоматическом методе 

Напоследок приведу  решение, предложенное Inex.

Парадоксы в  математике возникают тогда, когда  используемая система аксиом несовместна. Это слово означает, что из такой системы можно вывести как само утверждение, так и его отрицание. То же самое относится и к системе логических формул. Мы считаем, что система аксиом логики высказываний непротиворечива. К ней добавляется новая система аксиом.

Словесно она  такая: каждый критянин либо всегда лжет, либо всегда говорит правду; и один из них сказал, что все критняне - лжецы. Можно ли из аксиом логики высказываний и новых аксиом вывести, что "все  критняне лжецы" или обратное утверждение? Можно и то и другое. Следовательно новая логическая система несовместна.

Тогда:  
- либо существуют критяне, которые могут как лгать, так и говорить правду. Тогда такой критянин, солгав, может и не являться лжецом.  
- либо не верно, что существует критянин, сказавший, что все критяне - лжецы.

Вот и все. Парадокс не в логике, а в предпосылках. Из ложной посылки можно вывести  любое следствие.

От себя добавлю: это означает, что иногда (как в данном случае) условия  задачи могут быть специально подобраны так, чтобы противоречить применяемой логике. В этом ведь и смысл парадокса лжеца: наглядно продемонстрировать, как можно сформулировать такую задачу, что ее ответ не будет двузначным, не уложится в "да" или "нет". Аксиоматический метод со своей стороны отвечает на вопрос, как и почему это происходит.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Заключение 

Инженеры имеют  много инструментов для измерения  длины. Иногда достаточно небольшой  точности и применяется простая  линейка. А иногда нужна точность повыше, и применяется микрометр или микроскоп. Но всегда помнят о том, какая точность нужна и какую можно получить. И выводы всех приборов будут вполне определенны и разумны с учетом их погрешности.

Математика имеет  много вариантов логики для измерения  истинности. Иногда достаточно небольшой точности, и используется двузначная логика. А иногда нужна точность повыше, и применяются более сложные методы. Опять же, выбранный метод определяет точность результата.

Как видим, математика позволяет решить парадокс лжеца  с применением любой из наиболее популярных видов логики. Тип логики определяет ответ. Но в принципе все "логики" сходятся в одном. На вопрос лжеца нельзя дать один ответ потому, что в самом вопросе на деле спрятан не один, а несколько вопросов. Если же учесть этот факт, то мат. логика даст четкий ответ.

Зато можно  дать вполне определенный ответ на другой вопрос: нет, парадокс лжеца  не является неразрешимым. Он хорошо решается в разных видах математической логики. Он замечателен тем, что является хорошим "испытанием" и для новых видов логики, которые несомненно еще будут изобретены.  

 


Информация о работе Парадокс "Лжец"